# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a153490 Showing 1-1 of 1 %I A153490 #18 Apr 29 2018 02:12:11 %S A153490 1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,1, %T A153490 1,1,1,0,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0, %U A153490 1,1,0,1,1,0,1,1,0,1 %N A153490 Sierpinski carpet, read by antidiagonals. %C A153490 The Sierpinski carpet is the fractal obtained by starting with a unit square and at subsequent iterations, subdividing each square into 3 X 3 smaller squares and removing (from nonempty squares) the middle square. After the n-th iteration, the upper-left 3^n X 3^n squares will always remain the same. Therefore this sequence, which reads these by antidiagonals, is well-defined. %C A153490 Row sums are {1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, ...}. %H A153490 Eric Weisstein's World of Mathematics, Sierpinski Carpet. %H A153490 Wikipedia, Sierpinski carpet. %e A153490 The Sierpinski carpet matrix reads %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 0 1 1 0 1 1 0 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 1 1 0 0 0 1 1 1 ... %e A153490 1 0 1 0 0 0 1 0 1 ... %e A153490 1 1 1 0 0 0 1 1 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 0 1 1 0 1 1 0 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 (...) %e A153490 so the antidiagonals are %e A153490 {1}, %e A153490 {1, 1}, %e A153490 {1, 0, 1}, %e A153490 {1, 1, 1, 1}, %e A153490 {1, 1, 1, 1, 1}, %e A153490 {1, 0, 1, 1, 0, 1}, %e A153490 {1, 1, 1, 0, 1, 1, 1}, %e A153490 {1, 1, 1, 0, 0, 1, 1, 1}, %e A153490 {1, 0, 1, 0, 0, 0, 1, 0, 1}, %e A153490 {1, 1, 1, 1, 0, 0, 1, 1, 1, 1}, %e A153490 {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1}, %e A153490 {1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1}, %e A153490 ... %t A153490 << MathWorld`Fractal`; fractal = SierpinskiCarpet; %t A153490 a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}]; %t A153490 Flatten[%] %o A153490 (PARI) A153490_row(n,A=Mat(1))={while(#A