# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a153490
Showing 1-1 of 1
%I A153490 #18 Apr 29 2018 02:12:11
%S A153490 1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,1,
%T A153490 1,1,1,0,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,
%U A153490 1,1,0,1,1,0,1,1,0,1
%N A153490 Sierpinski carpet, read by antidiagonals.
%C A153490 The Sierpinski carpet is the fractal obtained by starting with a unit square and at subsequent iterations, subdividing each square into 3 X 3 smaller squares and removing (from nonempty squares) the middle square. After the n-th iteration, the upper-left 3^n X 3^n squares will always remain the same. Therefore this sequence, which reads these by antidiagonals, is well-defined.
%C A153490 Row sums are {1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, ...}.
%H A153490 Eric Weisstein's World of Mathematics, Sierpinski Carpet.
%H A153490 Wikipedia, Sierpinski carpet.
%e A153490 The Sierpinski carpet matrix reads
%e A153490 1 1 1 1 1 1 1 1 1 ...
%e A153490 1 0 1 1 0 1 1 0 1 ...
%e A153490 1 1 1 1 1 1 1 1 1 ...
%e A153490 1 1 1 0 0 0 1 1 1 ...
%e A153490 1 0 1 0 0 0 1 0 1 ...
%e A153490 1 1 1 0 0 0 1 1 1 ...
%e A153490 1 1 1 1 1 1 1 1 1 ...
%e A153490 1 0 1 1 0 1 1 0 1 ...
%e A153490 1 1 1 1 1 1 1 1 1 ...
%e A153490 (...)
%e A153490 so the antidiagonals are
%e A153490 {1},
%e A153490 {1, 1},
%e A153490 {1, 0, 1},
%e A153490 {1, 1, 1, 1},
%e A153490 {1, 1, 1, 1, 1},
%e A153490 {1, 0, 1, 1, 0, 1},
%e A153490 {1, 1, 1, 0, 1, 1, 1},
%e A153490 {1, 1, 1, 0, 0, 1, 1, 1},
%e A153490 {1, 0, 1, 0, 0, 0, 1, 0, 1},
%e A153490 {1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
%e A153490 {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
%e A153490 {1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1},
%e A153490 ...
%t A153490 << MathWorld`Fractal`; fractal = SierpinskiCarpet;
%t A153490 a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}];
%t A153490 Flatten[%]
%o A153490 (PARI) A153490_row(n,A=Mat(1))={while(#A