# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a151331 Showing 1-1 of 1 %I A151331 #35 Aug 06 2024 04:51:22 %S A151331 1,3,18,105,684,4550,31340,219555,1564080,11271876,82059768,602215614, %T A151331 4450146624,33076800900,247096919784,1854031805769,13965171795432, %U A151331 105550935041552,800212396412000,6083310009164388,46360755048406656,354109165968099048,2710276234371255888,20782807250217463750 %N A151331 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (-1, 0), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)}. %H A151331 Alois P. Heinz, Table of n, a(n) for n = 0..500 %H A151331 A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013. %H A151331 Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017. %H A151331 Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017). %H A151331 A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899, 2008. %H A151331 M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387, 2008. %F A151331 G.f.: (1/x)*Int(-(16*x^2+24*x-1)/(1+4*x)^5*hypergeom([5/4, 5/4],[2],-2*x/(x+1/4)^4*(x+1)*(x-1/8)),x). - _Mark van Hoeij_, Oct 13 2009 %F A151331 G.f.: Int(hypergeom([3/2,3/2],[2],16*x*(1+x)/(1+4*x)^2)/(1+4*x)^3,x)/x. - _Mark van Hoeij_, Aug 14 2014 %t A151331 aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}] %t A151331 CoefficientList[Series[Integrate[HypergeometricPFQ[{3/2,3/2},{2},16*x*(1+x)/(1+4*x)^2]/(1+4*x)^3,x]/x,{x,0,20}],x] (* _Vaclav Kotesovec_, Aug 16 2014, after _Mark van Hoeij_ *) %K A151331 nonn,walk %O A151331 0,2 %A A151331 _Manuel Kauers_, Nov 18 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE