# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a147649 Showing 1-1 of 1 %I A147649 #2 Mar 30 2012 17:34:28 %S A147649 1,1,1,1,2,1,1,5,5,1,1,6,8,6,1,1,7,16,16,7,1,1,8,19,26,19,8,1,1,9,31, %T A147649 45,45,31,9,1,1,10,34,86,90,86,34,10,1,1,11,50,126,196,196,126,50,11, %U A147649 1,1,12,53,148,266,322,266,148,53,12,1 %N A147649 Binary prejudiced single Sierpinski modulo two Pascal shift: Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0]; Mod[If[n > 2, 2*Binomial[n - 2, m - 1]*p(n,m), 0],2]=0. %C A147649 Row sums are:{1, 2, 4, 12, 22, 48, 82, 172, 352, 768, 1282,...}. %F A147649 Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0]. %e A147649 {1}, {1, 1}, {1, 2, 1}, {1, 5, 5, 1}, {1, 6, 8, 6, 1}, {1, 7, 16, 16, 7, 1}, {1, 8, 19, 26, 19, 8, 1}, {1, 9, 31, 45, 45, 31, 9, 1}, {1, 10, 34, 86, 90, 86, 34, 10, 1}, {1, 11, 50, 126, 196, 196, 126, 50, 11, 1}, {1, 12, 53, 148, 266, 322, 266, 148, 53, 12, 1} %t A147649 p[n_, m_] := If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; Table[Table[Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1], 0], {m, 0, n}], {n, 0, 10}]; Flatten[%] %Y A147649 A146986, A146987, A028262 %K A147649 nonn,tabl,uned %O A147649 0,5 %A A147649 _Roger L. Bagula_, Nov 09 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE