# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a140356 Showing 1-1 of 1 %I A140356 #6 Jan 21 2017 10:48:04 %S A140356 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,2,6,2,1,1,1,1,2,6,6,2, %T A140356 1,1,1,1,2,6,24,6,2,1,1,1,1,2,6,24,24,6,2,1,1,1,1,2,6,24,120,24,6,2,1, %U A140356 1,1,1,2,6,24,120,120,24,6,2,1,1,1,1,2,6,24,120,720,120,24,6,2,1,1,1,1,2,6,24 %N A140356 Triangle T(n,m) read by rows: m! if m <= floor(n/2), and (n-m)! otherwise. %C A140356 Row sums: 1, 2, 3, 4, 6, 8, 14, 20, 44, 68, 188,... which is %C A140356 2*A003422((n+1)/2) if n is odd, and A003422(n/2)+A003422(1+n/2) if n is even. %F A140356 T(n,m) = A000142(m) if m<=[n/2], = A000142(n-m) if m>[n/2], 0<=m<=n. %F A140356 Conjecture: limit_{n->infinity} sum_{m=0..n} ( 1/binomial(n,m) - T(n,m) ) = 0. %F A140356 T(n,m) = T(n,n-m). %e A140356 1, %e A140356 1, 1, %e A140356 1, 1, 1, %e A140356 1, 1, 1, 1, %e A140356 1, 1, 2, 1, 1, %e A140356 1, 1, 2, 2, 1, 1, %e A140356 1, 1, 2, 6, 2, 1, 1, %e A140356 1, 1, 2, 6, 6, 2, 1, 1, %e A140356 1, 1, 2, 6, 24, 6, 2, 1,1, %e A140356 1, 1, 2, 6, 24, 24, 6, 2, 1, 1, %e A140356 1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1 %t A140356 g[n_, m_] := If[m <= Floor[n/2], m!, (n - m)! ]; w = Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w] Table[Apply[Plus, Table[g[n, m], {m, 0, n}]], {n, 0, 10}] %K A140356 nonn,easy,tabl %O A140356 0,13 %A A140356 _Roger L. Bagula_ and _Gary W. Adamson_, May 30 2008 %E A140356 Non-Ascii characters corrected, offset set to 0, reported Mma experiments removed - The Assoc. Editors of the OEIS, Oct 31 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE