# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a132723 Showing 1-1 of 1 %I A132723 #14 Feb 15 2021 01:59:58 %S A132723 3,4,4,0,-8,-16,-16,0,32,64,64,0,-128,-256,-256,0,512,1024,1024,0, %T A132723 -2048,-4096,-4096,0,8192,16384,16384,0,-32768,-65536,-65536,0,131072, %U A132723 262144,262144,0,-524288,-1048576,-1048576 %N A132723 Binomial transform of A132429. %C A132723 Sequence is identical to its fourth differences. %H A132723 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A132723 Index entries for linear recurrences with constant coefficients, signature (2,-2). %F A132723 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n positive. For a(0)=3,a(1)=a(2)=4,a(3)=0. %F A132723 From _R. J. Mathar_, Apr 02 2008: (Start) %F A132723 O.g.f.: 1 + 2/(1 -2*x +2*x^2). %F A132723 a(n) = 2*a(n-1) - 2*a(n-2) if n>2. (End) %F A132723 E.g.f.: 1 + 2*sqrt(2)*exp(x)*sin(x + Pi/4). - _G. C. Greubel_, Feb 14 2021 %t A132723 Join[{3},LinearRecurrence[{2,-2},{4,4},50]] (* _Harvey P. Dale_, Mar 06 2014 *) %t A132723 Table[If[n<2, n+3, 2*((1+I)^(n-1) + (1-I)^(n-1))], {n,0,40}] (* _G. C. Greubel_, Feb 14 2021 *) %o A132723 (Sage) %o A132723 def A132723(n): return n+3 if (n<2) else 2*( (1+i)^(n-1) + (1-i)^(n-1) ) %o A132723 [A132723(n) for n in (0..40)] # _G. C. Greubel_, Feb 14 2021 %o A132723 (Magma) [3] cat [n le 2 select 4 else 2*(Self(n-1) - Self(n-2)): n in [1..40]]; // _G. C. Greubel_, Feb 14 2021 %K A132723 sign %O A132723 0,1 %A A132723 _Paul Curtz_, Nov 16 2007 %E A132723 More terms from _R. J. Mathar_, Apr 02 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE