# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a132723
Showing 1-1 of 1
%I A132723 #14 Feb 15 2021 01:59:58
%S A132723 3,4,4,0,-8,-16,-16,0,32,64,64,0,-128,-256,-256,0,512,1024,1024,0,
%T A132723 -2048,-4096,-4096,0,8192,16384,16384,0,-32768,-65536,-65536,0,131072,
%U A132723 262144,262144,0,-524288,-1048576,-1048576
%N A132723 Binomial transform of A132429.
%C A132723 Sequence is identical to its fourth differences.
%H A132723 G. C. Greubel, Table of n, a(n) for n = 0..1000
%H A132723 Index entries for linear recurrences with constant coefficients, signature (2,-2).
%F A132723 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n positive. For a(0)=3,a(1)=a(2)=4,a(3)=0.
%F A132723 From _R. J. Mathar_, Apr 02 2008: (Start)
%F A132723 O.g.f.: 1 + 2/(1 -2*x +2*x^2).
%F A132723 a(n) = 2*a(n-1) - 2*a(n-2) if n>2. (End)
%F A132723 E.g.f.: 1 + 2*sqrt(2)*exp(x)*sin(x + Pi/4). - _G. C. Greubel_, Feb 14 2021
%t A132723 Join[{3},LinearRecurrence[{2,-2},{4,4},50]] (* _Harvey P. Dale_, Mar 06 2014 *)
%t A132723 Table[If[n<2, n+3, 2*((1+I)^(n-1) + (1-I)^(n-1))], {n,0,40}] (* _G. C. Greubel_, Feb 14 2021 *)
%o A132723 (Sage)
%o A132723 def A132723(n): return n+3 if (n<2) else 2*( (1+i)^(n-1) + (1-i)^(n-1) )
%o A132723 [A132723(n) for n in (0..40)] # _G. C. Greubel_, Feb 14 2021
%o A132723 (Magma) [3] cat [n le 2 select 4 else 2*(Self(n-1) - Self(n-2)): n in [1..40]]; // _G. C. Greubel_, Feb 14 2021
%K A132723 sign
%O A132723 0,1
%A A132723 _Paul Curtz_, Nov 16 2007
%E A132723 More terms from _R. J. Mathar_, Apr 02 2008
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE