# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a129759
Showing 1-1 of 1
%I A129759 #29 Feb 19 2020 09:55:16
%S A129759 1,2,3,2,3,3,3,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,7,7,7,11,11,7,11,11,13,
%T A129759 13,11,11,11,11,13,13,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
%U A129759 13,17,17,17,17,17,19,19,17,17,17,17,19,19,17,17,19,19,19,19,19,19,17,19
%N A129759 For the Landau function L(n), A000793, this sequence gives the largest prime which is a factor of L(n).
%C A129759 This function is not monotone increasing, for example a(33) = 13 while a(34) = 11.
%C A129759 Nicolas showed that a(n) ~ sqrt(n log n) and Grantham showed that a(n) <= 1.328 sqrt(n log n) for n > 4. Massias, Nicolas, & Robin conjecture that a(n) <= 1.265... sqrt(n log n) in this range with equality at n = 215. - _Charles R Greathouse IV_, Jun 02 2014
%H A129759 Alois P. Heinz, Table of n, a(n) for n = 1..10000
%H A129759 Jon Grantham, The largest prime divisor of the maximal order of an element of S_n, Math. Comp. 64:209 (1995), pp. 407-410.
%H A129759 J. P. Massias, J. L. Nicolas and G. Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53:188 (1989), pp. 665-678. [alternate link]
%H A129759 Jean-Louis Nicolas, Ordre maximal d'un élément du groupe S_n des permutations et 'highly composite numbers', Bull. Soc. Math. France 97 (1969), 129-191.
%H A129759 Eric Weisstein's World of Mathematics, Landau's Function
%F A129759 a(n) = A006530(A000793(n)). - _R. J. Mathar_, May 17 2007
%e A129759 L(29) = 2520, whose largest prime factor is 7. So a(29) = 7.
%t A129759 b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j*b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]];
%t A129759 g[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]];
%t A129759 a[n_] := FactorInteger[g[n]][[-1, 1]];
%t A129759 Array[a, 100] (* _Jean-François Alcover_, Feb 19 2020, after _Alois P. Heinz_ in A000793 *)
%Y A129759 Cf. A006530, A000793, A128305.
%K A129759 nonn,look
%O A129759 1,2
%A A129759 _Anthony C Robin_, May 15 2007
%E A129759 More terms from _Klaus Brockhaus_ and _R. J. Mathar_, May 16 2007
%E A129759 Corrected a(66) by _Alois P. Heinz_, Feb 16 2013
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE