# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a112944 Showing 1-1 of 1 %I A112944 #11 Jul 24 2018 09:52:45 %S A112944 1,2,7,39,308,3013,33300,394340,4878109,62232321,812825244, %T A112944 10818489817,146250545528,2003199281223,27747288947266, %U A112944 388087900316025,5474206895126243,77795972452841542,1112947041203866164,16016508647052018408,231727628211887783830,3368855109532696440867 %N A112944 Number of unrooted regular odd-valent planar maps with 2 vertices; maps are considered up to orientation-preserving homeomorphisms and the vertices are of valency 2n+1. %H A112944 M. Bousquet, G. Labelle and P. Leroux, Enumeration of planar two-face maps, Discrete Math., vol. 222 (2000), 1-25. %H A112944 Z. C. Gao, V. A. Liskovets and N. C. Wormald, Enumeration of unrooted odd-valent regular planar maps, Preprint, 2005. %F A112944 a(n) = (1/2)binomial(2n, n) + (1/(4n+2))sum_{k|(2n+1)}phi(k)* binomial(2*floor(n/k), floor(n/k))^2, where phi(k) is the Euler function A000010. %e A112944 There exist 2 planar maps with two 3-valent vertices: a map with three parallel edges and a map with one loop in each vertex and a link. Therefore a(1)=2. %t A112944 a[n_] := (1/2) Binomial[2n, n] + (1/(4n+2)) Sum[EulerPhi[k] Binomial[2 Floor[n/k], Floor[n/k]]^2, {k, Divisors[2n+1]}]; %t A112944 Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Jul 24 2018 *) %o A112944 (PARI) a(n) = binomial(2*n, n)/2 + sumdiv(2*n+1, k, eulerphi(k)* binomial(2*(n\k), (n\k))^2)/(4*n+2); \\ _Michel Marcus_, Oct 14 2015 %Y A112944 Cf. A005470, A112945, A113181, A113182. %K A112944 nonn %O A112944 0,2 %A A112944 _Valery A. Liskovets_, Oct 10 2005 %E A112944 More terms from _Michel Marcus_, Oct 14 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE