# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a108185 Showing 1-1 of 1 %I A108185 #11 Apr 28 2019 15:29:24 %S A108185 0,4,24,1744,88480,20785984,4774925568,3557583518976,2784648830636544, %T A108185 7054995406469377024,16660711592693252288512 %N A108185 Number of Cantorian n X n matrices over a 2-letter alphabet. %C A108185 A matrix is Cantorian if no row matches any of the strings obtained by taking one term from each column in turn in such a way that they are from different rows. That is, no row word can match any transversal word. %C A108185 More precisely, let the matrix be M = (M_ij). Then no row (M_i1, M_i2, ..., M_in) can agree with any "transversal" (M_{1, pi(1}}, ..., M_{n, pi{n}}) for any permutation pi in S_n. %H A108185 S. Brlek, M. Mendes France, J. M. Robson and M. Rubey, Cantorian tableaux and permanents, L'Enseignement Math. 50 (2004), 287-304. %e A108185 a(2) = 4 because the matrices [[a,a],[b,b]], [[a,b],[b,a]] and the matrices obtained by switching a with b are Cantorian. %K A108185 hard,nonn,nice %O A108185 1,2 %A A108185 _Jeffrey Shallit_, Jun 14 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE