# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a105063 Showing 1-1 of 1 %I A105063 #24 Mar 13 2023 17:30:13 %S A105063 0,0,8,24,560,1616,36984,106664,2440416,7038240,161030504,464417208, %T A105063 10625572880,30644497520,701126779608,2022072419144,46263741881280, %U A105063 133426135166016,3052705837384904,8804102848537944,201432321525522416 %N A105063 a(1)=0, a(2)=0, a(3)=8, a(4)=24, a(n) = 32 + 66*a(n-2) - a(n-4) for n > 4. %C A105063 This sequence has the property 17*a(n)*(a(n) + 1) + 1 is a square. %H A105063 G. C. Greubel, Table of n, a(n) for n = 1..1000 %H A105063 Index entries for linear recurrences with constant coefficients, signature (1,66,-66,-1,1). %F A105063 From _R. J. Mathar_, Nov 13 2009: (Start) %F A105063 a(n) = a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5). %F A105063 G.f.: 8*x^3*(1+x)^2/((1-x)*(1+8*x-x^2)*(1-8*x-x^2)). (End) %F A105063 a(n) = (1/4)*(-32*[n=0] - 2 + i^n*((23 + 11*(-1)^n)*ChebyshevU(n, 4*I) - i*(187 + 89*(-1)^n)*ChebyshevU(n-1, 4*I))). - _G. C. Greubel_, Mar 13 2023 %t A105063 LinearRecurrence[{1,66,-66,-1,1}, {0,0,8,24,560}, 40] (* _G. C. Greubel_, Mar 13 2023 *) %o A105063 (Magma) R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( 8*x^3*(1+x)^2/((1-x)*(1-66*x^2+x^4)) )); // _G. C. Greubel_, Mar 13 2023 %o A105063 (SageMath) %o A105063 @CachedFunction %o A105063 def a(n): %o A105063 if (n<6): return (0,0,0,8,24,560)[n] %o A105063 else: return a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5) %o A105063 [a(n) for n in range(1,41)] # _G. C. Greubel_, Mar 13 2023 %Y A105063 Cf. A001090, A103200. %K A105063 nonn,easy %O A105063 1,3 %A A105063 _Pierre CAMI_, Apr 05 2005 %E A105063 More terms from _R. J. Mathar_, Nov 13 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE