# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a099750
Showing 1-1 of 1
%I A099750 #18 May 03 2016 10:33:17
%S A099750 1,3,22,346,5100,53504,411041,2471091,12244665,51924492,193733585,
%T A099750 649448814,1988025385,5628317525,14888914321,37110706136,87756490312,
%U A099750 198017040530,428428858514,892492579595,1796484842799,3504861873102,6645228329464,12273264853180
%N A099750 Molien series for complete weight enumerators of doubly-even Euclidean self-dual codes over the Galois ring GR(4,2).
%H A099750 Robert Israel, Table of n, a(n) for n = 0..10000
%H A099750 S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T. Ting, Baxter Permutations, Maj-balances, and Positive Braids, Electronic Journal of Combinatorics, 19(3) (2012), #P26. - From _N. J. A. Sloane_, Dec 25 2012
%H A099750 G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
%H A099750 Index entries for Molien series
%F A099750 G.f.: u1/u2 where u1 := f(t^4) + t^156*f(t^-4), u2 := (1-t^4)^3*(1-t^8)^5*(1-t^12)^5*(1-t^20)^3 and
%F A099750 f(t) = 1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19.
%p A099750 f:= unapply(1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19, t):
%p A099750 u1:= f(t) + t^39*f(t^(-1)):
%p A099750 u2:= (1-t)^3*(1-t^2)^5*(1-t^3)^5*(1-t^5)^3:
%p A099750 S:= series(u1/u2, t, 51):
%p A099750 seq(coeff(S,t,j),j=0..50); # _Robert Israel_, May 02 2016
%K A099750 nonn
%O A099750 0,2
%A A099750 G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE