# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a095651 Showing 1-1 of 1 %I A095651 #17 Jul 08 2024 15:21:14 %S A095651 523,887,1129,2557,3271,3739,3947,4027,4159,4423,4759,4831,5449,6397, %T A095651 6427,6451,7351,7459,8017,8543,8783,8867,9067,9349,10433,10667,11177, %U A095651 11447,11597,11867,12049,13063,13267,13421,13729,14011,14087,14107 %N A095651 Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 16. %C A095651 Primes that are fourth prime chords. %C A095651 These come from music based on the prime differences where the chords are an even number of note steps from the primary note. %H A095651 Robert Israel, Table of n, a(n) for n = 1..10000 %p A095651 P:= select(isprime, [seq(i,i=1..20000,2)]): %p A095651 J:= select(i -> P[i-1]+P[i+1] = 2*P[i]+16, [$2..nops(P)-1]): %p A095651 P[J]; # _Robert Israel_, Jun 10 2024 %t A095651 m = 4; Prime[ 1 + Select[ Range[1700], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* _Robert G. Wilson v_, Jul 14 2004 *) %t A095651 Select[Partition[Prime[Range[3000]],3,1],#[[1]]+#[[3]]==2#[[2]]+16&][[;;,2]] (* _Harvey P. Dale_, Jul 08 2024 *) %Y A095651 Cf. A095419, A095420, A095648, A095649, A095650, A095672, A095673. %K A095651 nonn %O A095651 1,1 %A A095651 _Roger L. Bagula_, Jul 02 2004 %E A095651 Edited and extended by _Robert G. Wilson v_, Jul 14 2004 %E A095651 Edited by _N. J. A. Sloane_, Nov 07 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE