# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a092936 Showing 1-1 of 1 %I A092936 #37 Mar 21 2024 06:48:19 %S A092936 1,9,100,1089,11881,129600,1413721,15421329,168220900,1835008569, %T A092936 20016873361,218350598400,2381839709041,25981886201049, %U A092936 283418908502500,3091626107326449,33724468272088441,367877524885646400 %N A092936 Area of n-th triple of hexagons around a triangle. %C A092936 This is the unsigned member r=-9 of the family of Chebyshev sequences S_r(n) defined in A092184: ((-1)^(n+1))*a(n) = S_{-9}(n), n>=0. %C A092936 a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/2,1/2)-fences, red half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal), green half-squares, and blue half-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,3/4)-fences, red (1/4,1/4)-fences, green (1/4,1/4)-fences, and blue (1/4,1/4)-fences. - _Michael A. Allen_, Dec 30 2022 %H A092936 Muniru A Asiru, Table of n, a(n) for n = 1..200 %H A092936 Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17. %H A092936 Index entries for linear recurrences with constant coefficients, signature (10,10,-1). %F A092936 a(n) = 10*(a(n-1)+a(n-2)) - a(n-3). %F A092936 G.f.: (1-x)*x/(1-10*x-10*x^2+x^3). %F A092936 a(n) = ((3-sqrt(13))^n-(3+sqrt(13))^n)^2/(13*4^n). %F A092936 a(n) = 2*(T(n, 11/2)-(-1)^n)/13 with twice the Chebyshev polynomials of the first kind evaluated at x=11/2: 2*T(n, 11/2)=A057076(n)=((11+3*sqrt(13))^n + (11-3*sqrt(13))^n)/2^n. - _Wolfdieter Lang_, Oct 18 2004 %F A092936 From _Michael A. Allen_, Dec 30 2022: (Start) %F A092936 a(n+1) = 11*a(n) - a(n-1) + 2*(-1)^n. %F A092936 a(n+1) = (1 + (-1)^n)/2 + 9*Sum_{k=1..n} ( k*a(n+1-k) ). (End) %e A092936 a(5) = 10*(1089+100)-9 = 11881. From A006190, a(5) = (3*33+10)^2 = 11881. %p A092936 seq(fibonacci(n,3)^2,n=1..18); # _Zerinvary Lajos_, Apr 05 2008 %t A092936 CoefficientList[Series[(1-x)*x/(1-10*x-10*x^2+x^3), {x, 0, 20}], x] %t A092936 (CoefficientList[Series[x/(1-3*x-x^2), {x, 0, 20}], x])^2 %t A092936 Table[Round[((3+Sqrt[13])^n)^2/(13*4^n)], {n, 0, 20}] %t A092936 LinearRecurrence[{10, 10, -1}, {1, 9, 100}, 18] (* _Georg Fischer_, Feb 22 2019 *) %o A092936 (GAP) a:=[1,9,100];; for n in [4..18] do a[n]:=10*(a[n-1]+a[n-2])-a[n-3]; od; a; # _Muniru A Asiru_, Feb 20 2018 %Y A092936 Equals (A006190)^2. %Y A092936 Cf. A005386, A006190. %K A092936 easy,nonn %O A092936 1,2 %A A092936 _Peter J. C. Moses_, Apr 18 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE