# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a081330 Showing 1-1 of 1 %I A081330 #19 Sep 10 2017 05:55:10 %S A081330 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,27, %T A081330 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51,52, %U A081330 54,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,73,74,75,76,78,80,81,82 %N A081330 Numbers that can be written as sum of two 3-smooth numbers. %C A081330 A081326(a(n)) > 0; complement of A081329. %H A081330 Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 %H A081330 Ivars Peterson, Medieval Harmony. [Broken link] %H A081330 Eric Weisstein's World of Mathematics, Smooth Number. %F A081330 a(n) >> exp(n^(1/4)). - _Charles R Greathouse IV_, Aug 22 2011 %t A081330 max = 100; Table[2^i *3^j + 2^k* 3^l, {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}, {k, 0, Log[2, max] // Ceiling}, {l, 0, Log[3, max] // Ceiling}] // Flatten // Union // Select[#, # <= max &] & (* _Jean-François Alcover_, Sep 10 2017 *) %o A081330 (PARI) list(lim)=my(v=List(), u=v, N); for(n=0, log(lim\1+.5)\log(3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); v=Set(v); for(i=1,#v,for(j=i,#v, N=v[i]+v[j]; if(N>lim, break); listput(u,N))); Set(u) \\ _Charles R Greathouse IV_, Sep 07 2014 %Y A081330 Cf. A003586, A081332, A081333, A081327, A081328. %K A081330 nonn %O A081330 1,1 %A A081330 _Reinhard Zumkeller_, Mar 19 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE