# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a075769 Showing 1-1 of 1 %I A075769 #16 Sep 26 2013 08:40:49 %S A075769 5,407,489,749,878,1451,1102,1208,1943,1528,1809,1605,2557,3097,3730, %T A075769 4829,6061,4880,6341,6172,7715,7067,10071,17441,11020,17531,14397, %U A075769 17441,14001,24161,24613,14288,14795,20396,25495,22577,19784,15836,19795,27713,30959 %N A075769 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for indecomposable Wallis pairs with x < y (ordered by values of x). %C A075769 If (x,y) and (u,v) are Wallis pairs, a is from (x,y) and c is from (u,v) and gcd(a,c)=1, b is from (x,y) and d is from(u,v) and gcd(b,d)=1, then (ac,bd) is also a Wallis pair. Such pairs are called decomposable. If (x,y) and (cx,cy) are Wallis pairs then (cx,cy) is also called decomposable. %D A075769 I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002. %H A075769 Donovan Johnson, Table of n, a(n) for n = 1..1000 %e A075769 (4,5) is a Wallis pair since sigma(16) = sigma(25) = 31. %t A075769 xmax = 20000; sigma[n_] := sigma[n] = DivisorSigma[1, n]; WallisQ[{x_, y_}] := sigma[x^2] == sigma[y^2]; pairs = Reap[Do[Do[ If[WallisQ[{x, y}] && ! (GCD[x, y] != 1 && WallisQ[{x, y}/GCD[x, y]]), Print[{x, y}, " is a Wallis pair to be tested for indecomposability"]; Sow[{x, y}]], {y, x + 1, 2.2*x}], {x, 1, xmax}]][[2, 1]]; indecomposableQ[{x0_, y0_}] := (pf = pairs // Flatten; sx = Intersection[Most@Divisors[x0], pf]; sy = Intersection[Most@Divisors[y0], pf]; xy = Outer[List, sx, sy] // Flatten[#, 1] &; sel = Select[xy, WallisQ[#] && WallisQ[{x0, y0}/#] &]; sel == {}); Select[pairs, indecomposableQ][[All, 2]] (* _Jean-François Alcover_, Sep 26 2013 *) %Y A075769 Cf. A075768, A072182, A072186, A077053. %K A075769 nonn,nice %O A075769 1,1 %A A075769 _N. J. A. Sloane_, Oct 13 2002 %E A075769 Corrected and extended by _Klaus Brockhaus_, Oct 22 2002 %E A075769 19795 from _Jean-François Alcover_, Dec 28 2012 %E A075769 Offset corrected by _Donovan Johnson_, Sep 18 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE