# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a073005 Showing 1-1 of 1 %I A073005 #77 Oct 27 2024 17:55:12 %S A073005 2,6,7,8,9,3,8,5,3,4,7,0,7,7,4,7,6,3,3,6,5,5,6,9,2,9,4,0,9,7,4,6,7,7, %T A073005 6,4,4,1,2,8,6,8,9,3,7,7,9,5,7,3,0,1,1,0,0,9,5,0,4,2,8,3,2,7,5,9,0,4, %U A073005 1,7,6,1,0,1,6,7,7,4,3,8,1,9,5,4,0,9,8,2,8,8,9,0,4,1,1,8,8,7,8,9,4,1,9,1,5 %N A073005 Decimal expansion of Gamma(1/3). %C A073005 Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - _Charles R Greathouse IV_, Nov 11 2013 %D A073005 H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230. %D A073005 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33. %H A073005 Harry J. Smith, Table of n, a(n) for n = 1..1000 %H A073005 Alessandro Languasco and Pieter Moree, Euler constants from primes in arithmetic progression, arXiv:2406.16547 [math.NT], 2024. See p. 8. %H A073005 Yu V. Nesterenko, Modular functions and transcendence questions, Sbornik: Mathematics 187:9 (1996), pp. 1319-1348. (English translation) %H A073005 Andrea Pinos, Gamma of reciprocal by Laplace. %H A073005 Simon Plouffe, GAMMA(1/3). %H A073005 Wikipedia, Particular values of the Gamma function: General rational arguments. %H A073005 Index entries for transcendental numbers. %H A073005 Index to sequences related to the Gamma function. %F A073005 this * A073006 = A186706. - _R. J. Mathar_, Jan 15 2021 %F A073005 From _Amiram Eldar_, Jun 25 2021: (Start) %F A073005 Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind. %F A073005 Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End) %F A073005 From _Andrea Pinos_, Aug 12 2023: (Start) %F A073005 Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623. %F A073005 General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End) %F A073005 Equals 3*A202623 = exp(A256165). - _Hugo Pfoertner_, Jun 28 2024 %e A073005 Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009... %t A073005 RealDigits[ N[ Gamma[1/3], 110]][[1]] %o A073005 (PARI) default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 19 2009 %o A073005 (Magma) R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // _G. C. Greubel_, Mar 10 2018 %Y A073005 Cf. A073006, A202623, A203145, A256165. %K A073005 cons,nonn,changed %O A073005 1,1 %A A073005 _Robert G. Wilson v_, Aug 03 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE