# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a069123 Showing 1-1 of 1 %I A069123 #18 Apr 10 2020 18:56:47 %S A069123 1,1,2,1,6,2,1,24,6,4,2,1,120,24,12,6,4,2,1,720,120,48,24,36,12,6,8,4, %T A069123 2,1,5040,720,240,120,144,48,24,36,24,12,6,8,4,2,1,40320,5040,1440, %U A069123 720,720,240,120,576,144,96,48,24,72,36,24,12,6,16,8,4,2,1 %N A069123 Triangle formed as follows: For n-th row, n >= 0, record the A000041(n) partitions of n; for each partition, write down number of ways to arrange the parts. %H A069123 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A069123 []!=prod_k(n[k]!), or equivalently, []!=prod_k(n[k]!^m[k]). %e A069123 This is a function of the individual partitions of an integer. For n = 0 to 5 the terms are (1), (1), (2,1), (6,2,1), (24,6,4,2,1). The partitions are ordered with the largest part sizes first, so the row 4 indices are [4], [3,1], [2,2], [2,1,1] and [1,1,1,1]. %e A069123 . %e A069123 The irregular table starts: %e A069123 [0] [1] %e A069123 [1] [1] %e A069123 [2] [2, 1] %e A069123 [3] [6, 2, 1] %e A069123 [4] [24, 6, 4, 2, 1] %e A069123 [5] [120, 24, 12, 6, 4, 2, 1] %e A069123 [6] [720, 120, 48, 24, 36, 12, 6, 8, 4, 2, 1] %t A069123 Table[Map[Function[n, Apply[Times, n! ]], IntegerPartitions[i]], {i,0,8}] // Flatten (* _Geoffrey Critzer_, May 19 2009 *) %o A069123 (SageMath) %o A069123 def A069123row(n): %o A069123 return [product(factorial(part) for part in partition) for partition in Partitions(n)] %o A069123 for n in (0..6): print(A069123row(n)) # _Peter Luschny_, Apr 10 2020 %Y A069123 Cf. A000142, A333144. %Y A069123 Using Abramowitz-Stegun ordering of partitions this becomes array A134133. %K A069123 easy,nonn,tabf %O A069123 0,3 %A A069123 _Franklin T. Adams-Watters_, Apr 07 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE