# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a058034 Showing 1-1 of 1 %I A058034 #26 Mar 18 2024 12:18:54 %S A058034 1,3,12,27,49,75,108,147,193,243,300,363,433,507,588,675,769,867,972, %T A058034 1083,1201,1323,1452,1587,1729,1875,2028,2187,2353,2523,2700,2883, %U A058034 3073,3267,3468,3675,3889,4107,4332,4563,4801,5043,5292,5547,5809,6075,6348 %N A058034 Number of numbers whose cube root rounds to n. %H A058034 Robert Israel, Table of n, a(n) for n = 0..10000 %H A058034 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1). %F A058034 a(n) = 3n^2+1 if n == 0 (mod 4), 3n^2 otherwise. %F A058034 a(n) = A033428(n)+A011765(n) = A034131(n-1)-A034131(n-2). %F A058034 a(n) = (1+(-1)^n+(-i)^n+i^n+12*n^2)/4 where i=sqrt(-1). - _Colin Barker_, Jul 04 2014 %F A058034 G.f.: -(3*x^5+6*x^4+6*x^3+7*x^2+x+1) / ((x-1)^3*(x+1)*(x^2+1)). - _Colin Barker_, Jul 04 2014 %e A058034 a(2)=12 since the cube roots of 4, 5, 6, ..., 15 all lie between 1.5 and 2.5. %p A058034 seq(1 + floor((n+1/2)^3) - ceil((n-1/2)^3), n = 0 .. 100); %t A058034 Table[SeriesCoefficient[-(3 x^5 + 6 x^4 + 6 x^3 + 7 x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1)), {x, 0, n}], {n, 0, 46}] (* _Michael De Vlieger_, Dec 24 2015 *) %t A058034 LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 3, 12, 27, 49, 75}, 50] (* _Vincenzo Librandi_, Dec 25 2015 *) %o A058034 (PARI) Vec(-(3*x^5+6*x^4+6*x^3+7*x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)) + O(x^100)) \\ _Colin Barker_, Jul 04 2014 %o A058034 (Magma) [n mod 4 eq 0 select 3*n^2+1 else 3*n^2: n in [0..80]]; // _Vincenzo Librandi_, Dec 25 2015 %Y A058034 Cf. A003215 for number whose floor (or ceiling) of the cube root is n, A004277 for number whose square root rounds to n. %K A058034 easy,nonn %O A058034 0,2 %A A058034 _Henry Bottomley_, Nov 22 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE