# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a055601
Showing 1-1 of 1
%I A055601 #39 Apr 07 2021 20:00:24
%S A055601 1,1,9,343,50625,28629151,62523502209,532875860165503,
%T A055601 17878103347812890625,2375680873491867011912191,
%U A055601 1255325460068093790930770843649,2644211984585174742731315532085090303,22235498641774645581443610453175918212890625
%N A055601 Number of n X n binary matrices with no zero rows.
%C A055601 More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! for all q, m, b. - _Paul D. Hanna_, Jan 02 2008
%H A055601 Kenny Lau, Table of n, a(n) for n = 0..57
%F A055601 a(n) = A092477(n, n) for n>0.
%F A055601 a(n) = (2^n - 1 )^n. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
%F A055601 a(n) = Sum_{k=0..n} (-1)^k*C(n, k)*2^((n-k)*n).
%F A055601 E.g.f.: A(x) = Sum_{n>=0} 2^(n^2) * exp(-2^n*x) * x^n/n!. - _Paul D. Hanna_, Jan 02 2008
%F A055601 O.g.f.: Sum_{n>=0} 2^(n^2)*x^n/(1 + 2^n*x)^(n+1). - _Paul D. Hanna_, Jan 20 2010
%F A055601 Sum_{n>=1} 1/a(n) = A303560. - _Amiram Eldar_, Nov 18 2020
%e A055601 A(x) = 1 + x + 3^2*x^2/2! + 7^3*x^3/3! + 15^4*x^4/4! +... + (2^n-1)^n*x^n/n! +...
%e A055601 A(x) = exp(-x) + 2*exp(-2x) + 2^4*exp(-4x)*x^2/2! + 2^9*exp(-8x)*x^3/3! +...+ 2^(n^2)*exp(-2^n*x)*x^n/n! +...
%e A055601 This is a special case of the more general statement: Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=-1. - _Paul D. Hanna_, Jan 02 2008
%p A055601 a:= n-> mul(Stirling2(n+1, 2), j=1..n): seq(a(n), n=0..10); # _Zerinvary Lajos_, Jan 01 2009
%t A055601 Join[{1},Table[(2^n-1)^n,{n,16}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 14 2011 *)
%o A055601 (PARI) a(n)=n!*polcoeff(sum(k=0,n,2^(k^2)*exp(-2^k*x)*x^k/k!),n) \\ _Paul D. Hanna_, Jan 02 2008
%o A055601 (Python) a = lambda n:((1<