# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a053694 Showing 1-1 of 1 %I A053694 #36 Jan 27 2024 07:08:59 %S A053694 1,1,0,1,1,0,0,1,1,1,0,0,2,0,0,1,2,1,0,1,0,0,0,0,1,2,0,0,2,0,0,1,0,2, %T A053694 0,1,2,0,0,1,2,0,0,0,1,0,0,0,1,1,0,2,2,0,0,0,0,2,0,0,2,0,0,1,2,0,0,2, %U A053694 0,0,0,1,2,2,0,0,0,0,0,1,1,2,0,0,2,0,0,0,2,1,0,0,0,0,0,0,2,1,0,1,2,0,0,2,0 %N A053694 Number of self-conjugate 5-core partitions of n. %C A053694 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %D A053694 Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 258, Entry 9(iii). %H A053694 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A053694 Frank Garvan, Dongsu Kim, and Dennis Stanton, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1-17. %H A053694 Christopher R. H. Hanusa and Rishi Nath, The number of self-conjugate core partitions, arxiv:1201.6629 [math.NT], 2012. See Table 1, p. 15. %H A053694 Michael Somos, Introduction to Ramanujan theta functions, 2019. %H A053694 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions. %F A053694 G.f.: product((1-q^(10*i))^2*(1-q^(10*i-5))*(1-q^(4*i-2))/((1-q^(2*i-1))*(1-q^(20*i-10))), i=1..200) %F A053694 a(n) = b(n + 1) where b(n) is multiplicative and b(2^e) = b(5^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 3, 7 (mod 8). %F A053694 Expansion of (phi(x)^2 - phi(x^5)^2) / (4*x) = chi(x) * f(-x^5) * f(-x^20) in powers of x where phi(), chi(), f() are Ramanujan theta functions. %F A053694 From _Michael Somos_, Apr 25 2003: (Start) %F A053694 Expansion of q^(-1) * eta(q^2)^2 * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4)) in powers of q. %F A053694 Euler transform of period 20 sequence [1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, ...]. %F A053694 G.f.: Product_{k>0} (1 - x^(10*k))^2 * (1 + x^(2*k - 1)) / (1 + x^(10*k - 5)). (End) %F A053694 a(4*n) = A122190(n). %F A053694 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/5. - _Amiram Eldar_, Jan 27 2024 %e A053694 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + 2*x^12 + x^15 + 2*x^16 + x^17 + ... %e A053694 q + q^2 + q^4 + q^5 + q^8 + q^9 + q^10 + 2*q^13 + q^16 + 2*q^17 + q^18 + ... %t A053694 a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^2 - EllipticTheta[3, 0, q^5]^2) / (4 q), {q, 0, n}] (* _Michael Somos_, Jul 11 2011 *) %t A053694 a[ n_] := SeriesCoefficient[ QPochhammer[-q, q^2] QPochhammer[q^5, q^5] QPochhammer[q^20, q^20], {q, 0, n}] (* _Michael Somos_, Jul 11 2011 *) %o A053694 (PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=0, n\2, 1 + x^(2*k + 1), 1 + x * O(x^n)) * prod( k=0, n\10, (1 - x^(10*k + 10))^2 / (1 + x^(10*k + 5)), 1 + x*O(x^n)), n))} %o A053694 (PARI) {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( -100, d)))} %o A053694 (PARI) {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -100, p) * X))[n])} %o A053694 (PARI) {a(n) = local(A); if(n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^20 + A) / eta(x + A) / eta(x^4 + A), n))} %Y A053694 Cf. A122190. %Y A053694 Cf. A000700, A000122, A010054, A121373. %K A053694 easy,nice,nonn %O A053694 0,13 %A A053694 _James A. Sellers_, Feb 14 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE