# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a048280 Showing 1-1 of 1 %I A048280 #41 May 23 2020 22:45:24 %S A048280 2,2,3,3,3,3,5,4,5,4,4,4,5,5,5,3,5,5,6,7,9,6,7,5,9,7,7,6,5,5,7,8,6,5, %T A048280 4,7,6,6,6,6,6,6,7,9,7,6,7,7,7,5,6,7,13,7,6,7,8,7,10,6,9,9,7,11,9,5,8, %U A048280 9,8,6,6,8,9,6,8,8,8,5,7,13,8,7,7,9,10,8,8,9,8,8,11,13,8,8,10,8,9,8,10,7,9,9,10,10,7,9 %N A048280 Length of longest run of consecutive quadratic residues mod prime(n). %C A048280 0 and 1 are consecutive quadratic residues for any prime, so a(n) >= 2. %C A048280 "Consecutive" allows wrap-around, so p-1 and 0 are consecutive. - _Robert Israel_, Jul 20 2014 %C A048280 A002307(n) is defined similarly, except that only positive reduced quadratic residues are counted. - _Jonathan Sondow_, Jul 20 2014 %C A048280 For longest runs of quadratic nonresidues, see A002308. - _Jonathan Sondow_, Jul 20 2014 %H A048280 Robert Israel, Table of n, a(n) for n = 1..10000 %H A048280 P. Pollack and E. Treviño, The primes that Euclid forgot, Amer. Math. Monthly, 121 (2014), 433-437. %H A048280 Enrique Treviño, Corrigendum to “On the maximum number of consecutive integers on which a character is constant”, Mosc. J. Comb. Number Theory 7 (2017), no. 3, 1-2. %F A048280 a(n) < 2*sqrt(prime(n)) for n >= 1 (see Pollack and Treviño for n > 1). - _Jonathan Sondow_, Jul 20 2014 %F A048280 a(n) >= A002307(n). - _Jonathan Sondow_, Jul 20 2014 %F A048280 a(n) < 7 prime(n)^(1/4)log(prime(n)) for all n > 1, or a(n) < 3.2 prime(n)^(1/4)log(prime(n)) for n >= 10^13. - _Enrique Treviño_, Apr 16 2020 %e A048280 For n = 7, prime(7) = 17 has consecutive quadratic residues 15,16,0,1,2, and no longer sequence of consecutive quadratic residues, so a(7)=5. %p A048280 A:= proc(n) local P, res, nonres, nnr; %p A048280 P:= ithprime(n); %p A048280 res:= {seq(i^2,i=0..floor((P-1)/2)}; %p A048280 nonres:= {$1..P-1} minus res; %p A048280 nnr:= nops(nonres); %p A048280 max(seq(nonres[i+1]-nonres[i]-1,i=1..nnr-1),nonres[1]-nonres[-1]+P-1) %p A048280 end proc; %p A048280 A(1):= 2: %p A048280 seq(A(n),n=1..100); # _Robert Israel_, Jul 20 2014 %Y A048280 Cf. A002307, A048281. %K A048280 nonn %O A048280 1,1 %A A048280 _David W. Wilson_ %E A048280 Offset corrected to 1 and definition clarified by _Jonathan Sondow_ Jul 20 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE