# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a047265 Showing 1-1 of 1 %I A047265 #38 Sep 22 2023 05:20:56 %S A047265 1,-1,1,0,-2,1,0,1,-3,1,-1,0,3,-4,1,0,-2,-1,6,-5,1,-1,2,-3,-4,10,-6,1, %T A047265 0,-2,6,-3,-10,15,-7,1,0,2,-6,12,0,-20,21,-8,1,0,1,6,-16,19,9,-35,28, %U A047265 -9,1,0,0,0,16,-35,24,28,-56,36,-10,1,-1,2,-3,-6,40,-65,21,62,-84,45,-11,1 %N A047265 Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k. %C A047265 This is an ordinary convolution triangle. If a column k=0 starting at n=0 is added, then this is the Riordan triangle R(1, f(x)), with %C A047265 f(x) = Product_{j>=1} (1 - (-x)^j) - 1, generating {0, {A121373(n)}_{n>=1}}. - _Wolfdieter Lang_, Feb 16 2021 %H A047265 Alois P. Heinz, Rows n = 1..200, flattened %H A047265 H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440. %H A047265 H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy) %F A047265 G.f. column k: (Product_{j>=1} (1 - (-x)^j) - 1)^k, for k >= 1. See the name and a Riordan triangle comment above. - _Wolfdieter Lang_, Feb 16 2021 %F A047265 From _G. C. Greubel_, Sep 07 2023: (Start) %F A047265 T(n, n) = 1. %F A047265 T(n, n-1) = -A000027(n-1). %F A047265 T(n, n-2) = A000217(n-3). %F A047265 T(n, n-3) = -A000292(n-5). %F A047265 Sum_{k=1..n} T(n, k) = (-1)^n * A307059(n). %F A047265 Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A000041(n). (End) %e A047265 Triangle starts: %e A047265 1, %e A047265 -1, 1, %e A047265 0, -2, 1, %e A047265 0, 1, -3, 1, %e A047265 -1, 0, 3, -4, 1, %e A047265 0, -2, -1, 6, -5, 1, %e A047265 -1, 2, -3, -4, 10, -6, 1, %e A047265 0, -2, 6, -3, -10, 15, -7, 1, %e A047265 0, 2, -6, 12, 0, -20, 21, -8, 1, %e A047265 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, %e A047265 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, %e A047265 -1, 2, -3, -6, 40, ... %p A047265 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A047265 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A047265 end: %p A047265 T:= proc(n, k) option remember; %p A047265 `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)), %p A047265 (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A047265 end: %p A047265 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Feb 07 2021 %t A047265 T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j,n}] - 1)^k, {x, 0, n}]; %t A047265 Table[T[n, k], {n,12}, {k,n}]//Flatten (* _Jean-François Alcover_, Dec 05 2013 *) %o A047265 (PARI) T(n,k) = polcoeff((-1)^n*(Ser(prod(i=1,n,1-x^i)-1)^k), n) \\ _Ralf Stephan_, Dec 08 2013 %o A047265 (Magma) %o A047265 R:=PowerSeriesRing(Integers(), 40); %o A047265 T:= func< n,k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >; %o A047265 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Sep 07 2023 %o A047265 (SageMath) %o A047265 from sage.combinat.q_analogues import q_pochhammer %o A047265 P. = PowerSeriesRing(ZZ, 50) %o A047265 def T(n,k): return P( (-1)^n*(-1 + q_pochhammer(n,x,x) )^k ).list()[n] %o A047265 flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Sep 07 2023 %Y A047265 Columns: A001482 - A001488, A001490, A006665, A010815, A047649, A047654, A047655, A047938 - A047648. %Y A047265 Cf. A341418 (differently signed). %Y A047265 Cf. A000027, A000041, A000217, A000292, A121373, A307059. %K A047265 sign,easy,nice,tabl %O A047265 1,5 %A A047265 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE