# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a038617 Showing 1-1 of 1 %I A038617 #53 Aug 04 2023 18:59:12 %S A038617 2,3,5,7,11,13,17,23,31,37,41,43,47,53,61,67,71,73,83,101,103,107,113, %T A038617 127,131,137,151,157,163,167,173,181,211,223,227,233,241,251,257,263, %U A038617 271,277,281,283,307,311,313,317,331,337,347,353,367,373,383,401,421 %N A038617 Primes not containing the digit '9'. %C A038617 Subsequence of primes of A007095. - _Michel Marcus_, Feb 22 2015 %C A038617 Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - _Charles R Greathouse IV_, Apr 08 2016 %H A038617 Indranil Ghosh, Table of n, a(n) for n = 1..50000 %H A038617 M. F. Hasler, Numbers avoiding certain digits, OEIS wiki, Jan 12 2020. %H A038617 James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016. %H A038617 James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019). %F A038617 a(n) ~ n^(log 10/log 9) log n. - _Charles R Greathouse IV_, Aug 03 2023 %t A038617 Select[Prime[Range[1000]], DigitCount[ # ][[9]] == 0 &] (* _Stefan Steinerberger_, May 20 2006 *) %o A038617 (Magma) [ p: p in PrimesUpTo(500) | not 9 in Intseq(p) ]; // _Bruno Berselli_, Aug 08 2011 %o A038617 (PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 9), print1(p, ", "));); \\ _Michel Marcus_, Feb 22 2015 %o A038617 (PARI) lista(nn) = forprime (p=2, nn, if (vecmax(digits(p)) != 9, print1(p, ", "))); \\ _Michel Marcus_, Apr 06 2016 %o A038617 (PARI) next_A038617(n)=until((n=nextprime(n+1))==(n=next_A007095(n-1)), ); n \\ _M. F. Hasler_, Jan 14 2020 %o A038617 (Python) %o A038617 from sympy import isprime %o A038617 i = 1 %o A038617 while i <= 300: %o A038617 if "9" not in str(i) and isprime(i): %o A038617 print(str(i), end=",") %o A038617 i += 1 # _Indranil Ghosh_, Feb 07 2017 %Y A038617 Intersection of A000040 (primes) and A007095 (numbers with no digit 9). %Y A038617 Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and this sequence, respectively. %Y A038617 Primes with other restrictions on digits: A106116, A156756. %K A038617 nonn,easy,base %O A038617 1,1 %A A038617 Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE