# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a023143 Showing 1-1 of 1 %I A023143 #65 Aug 14 2022 15:27:08 %S A023143 1,2,5,6,12,14,181,6459,6460,6466,100362,251712,251732,637236, %T A023143 10553504,10553505,10553547,10553827,10553851,10553852,69709709, %U A023143 69709724,69709728,69709869,69709961,69709962,179992920,179992922,179993170,465769815,465769819,465769840,3140421737,3140421744,3140421767,3140421892,3140421935 %N A023143 Numbers k such that prime(k) == 1 (mod k). %C A023143 A004648(a(n)) <= 1. - _Reinhard Zumkeller_, Jul 30 2012 %H A023143 Giovanni Resta, Table of n, a(n) for n = 1..94 %e A023143 6 is in the sequence because the 6th prime, 13, is congruent to 1 (mod 6). %t A023143 Do[ If[ IntegerQ[ (Prime[ n ] - 1) / n ], Print[ n ] ], {n, 1, 10^8} ] %o A023143 (Haskell) %o A023143 import Data.List (elemIndices) %o A023143 a023143 n = a023143_list !! (n-1) %o A023143 a023143_list = 1 : map (+ 1) (elemIndices 1 a004648_list) %o A023143 -- _Reinhard Zumkeller_, Jul 30 2012, Jun 08 2011 %o A023143 (Python) %o A023143 def A023143(end): %o A023143 primes=[2,3] %o A023143 a023143_list=[1] %o A023143 num=3 %o A023143 while len(primes)<=end: %o A023143 num+=1 %o A023143 prime=False %o A023143 length=len(primes) %o A023143 for y in range(0,length): %o A023143 if num % primes[y]!=0: %o A023143 prime=True %o A023143 else: %o A023143 prime=False %o A023143 break %o A023143 if (prime): %o A023143 primes.append(num) %o A023143 for x in range(2, len(primes)): %o A023143 if (primes[x-1]%(x))==1: %o A023143 a023143_list.append(x) %o A023143 return a023143_list %o A023143 # _Conner L. Delahanty_, Apr 19 2014 %o A023143 (Python) %o A023143 from sympy import primerange %o A023143 def A023143(end): return [n+1 for n, p in enumerate(primerange(2, end)) if (p-1) % (n-1) == 0] # _David Radcliffe_, Jun 27 2016 %o A023143 (PARI) n=0; print1(1); forprime(p=2,1e9, if(p%n++==1, print1(", "n))) \\ _Charles R Greathouse IV_, Apr 28 2015 %o A023143 (Magma) [n: n in [1..10000] | IsIntegral((NthPrime(n)-1)/n)]; // _Marius A. Burtea_, Dec 30 2018 %Y A023143 Cf. A048891, A045924, A052013, A023144, A023145, A023146, A023147, A023148, A023149, A023150, A023151, A023152. %K A023143 nonn,nice %O A023143 1,2 %A A023143 _David W. Wilson_ and _G. L. Honaker, Jr._, Jun 14 1998 %E A023143 More terms from _Jud McCranie_, Dec 11 1999 %E A023143 a(30)-a(37) from _Zak Seidov_, Apr 19 2014 %E A023143 Terms a(33)-a(37) sorted in correct order by _Giovanni Resta_, Feb 23 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE