# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a020742
Showing 1-1 of 1
%I A020742 #22 Oct 30 2024 21:13:08
%S A020742 7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,
%T A020742 53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,
%U A020742 99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139
%N A020742 Pisot sequence T(7,9).
%H A020742 Colin Barker, Table of n, a(n) for n = 0..1000
%H A020742 Tanya Khovanova, Recursive Sequences.
%H A020742 Index entries for linear recurrences with constant coefficients, signature (2,-1).
%F A020742 a(n) = 2*n + 7.
%F A020742 a(n) = 2*a(n-1) - a(n-2).
%F A020742 From _Elmo R. Oliveira_, Oct 30 2024: (Start)
%F A020742 G.f.: (7 - 5*x)/(1 - x)^2.
%F A020742 E.g.f.: (7 + 2*x)*exp(x).
%F A020742 a(n) = A016825(n+3)/2 = A028560(n+1) - A028560(n). (End)
%t A020742 T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[7, 9, 66] (* _Michael De Vlieger_, Aug 08 2016 *)
%o A020742 (PARI) pisotT(nmax, a1, a2) = {
%o A020742 a=vector(nmax); a[1]=a1; a[2]=a2;
%o A020742 for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
%o A020742 a
%o A020742 }
%o A020742 pisotT(50, 7, 9) \\ _Colin Barker_, Aug 08 2016
%Y A020742 Subsequence of A005408, A020735. See A008776 for definitions of Pisot sequences.
%Y A020742 Cf. A016825, A028560.
%K A020742 nonn,easy,changed
%O A020742 0,1
%A A020742 _David W. Wilson_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE