# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a019673 Showing 1-1 of 1 %I A019673 #50 Oct 05 2024 12:49:20 %S A019673 5,2,3,5,9,8,7,7,5,5,9,8,2,9,8,8,7,3,0,7,7,1,0,7,2,3,0,5,4,6,5,8,3,8, %T A019673 1,4,0,3,2,8,6,1,5,6,6,5,6,2,5,1,7,6,3,6,8,2,9,1,5,7,4,3,2,0,5,1,3,0, %U A019673 2,7,3,4,3,8,1,0,3,4,8,3,3,1,0,4,6,7,2,4,7,0,8,9,0,3,5,2,8,4,4 %N A019673 Decimal expansion of Pi/6. %C A019673 From _Omar E. Pol_, Aug 30 2007: (Start) %C A019673 Pi/6 = Volume of the inscribed ellipsoid / (Volume of the cuboid (If L1>L2>L3)). %C A019673 Pi/6 = Volume of the inscribed spheroid / (Volume of the cuboid (If L1>(L2=L3))). %C A019673 Pi/6 = Volume of the inscribed spheroid / (Volume of the cuboid (If L1<(L2=L3))). %C A019673 Pi/6 = Volume of the inscribed sphere / (Volume of the regular hexahedron (Or cube)). (End) %C A019673 Pi/6 = Surface area of the inscribed sphere / (surface area of the regular hexahedron (or cube)). - _Omar E. Pol_, Nov 13 2007 %C A019673 Decimal expansion of arctan(sqrt(1/3)). - _Clark Kimberling_, Sep 23 2011 %C A019673 Also, decimal expansion of sum( k>=1, (-120+329*k+568*k^2)/(k*(1+k)*(1+2*k)*(1+4*k)*(3+4*k)*(5+4*k)) ). - _Bruno Berselli_, Dec 01 2013 %C A019673 Atomic packing factor (APF) of the simple cubic lattice filled with spheres of the same diameter (unique example among chemical elements: polonium crystal). - _Stanislav Sykora_, Sep 29 2014 %D A019673 Ian Stewart, Professor Stewart's Cabinet of Mathematical Curiosities, Basic Books, a member of the Perseus Books Group, NY, 2009, "A Constant Bore", pp. 49-50 & 264-266. %H A019673 Ivan Panchenko, Table of n, a(n) for n = 0..1000 %H A019673 Wikipedia, Atomic packing factor %H A019673 Index entries for transcendental numbers %F A019673 From _Amiram Eldar_, Aug 15 2020: (Start) %F A019673 Equals Integral_{x=0..oo} 1/(x^2 + 9) dx. %F A019673 Equals Integral_{x=0..oo} 1/(9*x^2 + 1) dx. (End) %F A019673 Pi/6 = Sum_{n >= 1} i/(n*P(n,sqrt(-3))*P(n-1,sqrt(-3))), where i = sqrt(-1) and P(n,x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation Pi/6 = 0.52359877559(52...) correct to 11 decimal places - _Peter Bala_, Mar 16 2024 %e A019673 Pi/6 = 0.5235987755982988730771072305465838140328615665625176368291574... %t A019673 RealDigits[N[Pi/6,6! ]] (* _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009 *) %t A019673 RealDigits[Pi/6,10,120][[1]] (* _Harvey P. Dale_, Oct 05 2024 *) %o A019673 (PARI) Pi/6 \\ _Charles R Greathouse IV_, Jul 07 2014 %o A019673 (Magma) C := ComplexField(); [Pi(C)/6]; // _G. C. Greubel_, Nov 18 2017 %Y A019673 Cf. A000796, A132696. %Y A019673 Cf. APF's of other crystal lattices: A093825 (hcp,fcc), A247446 (diamond cubic). %K A019673 nonn,cons %O A019673 0,1 %A A019673 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE