# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a017788 Showing 1-1 of 1 %I A017788 #23 Jun 28 2023 21:50:27 %S A017788 1,72,2556,59640,1028790,13991544,156238908,1473109704,11969016345, %T A017788 85113005120,536211932256,3022285436352,15363284301456,70907466006720, %U A017788 298824321028320,1155454041309504,4116305022165108,13559593014190944,41432089765583440 %N A017788 Binomial coefficients C(72,n). %C A017788 Row 72 of A007318. %H A017788 Nathaniel Johnston, Table of n, a(n) for n = 0..72 (full sequence) %F A017788 From _G. C. Greubel_, Nov 15 2018: (Start) %F A017788 G.f.: (1+x)^72. %F A017788 E.g.f.: 1F1(-72; 1; -x), where 1F1 is the confluent hypergeometric function. (End) %p A017788 seq(binomial(72,n), n=0..72); # _Nathaniel Johnston_, Jun 24 2011 %t A017788 Binomial[72, Range[0,72]] (* _G. C. Greubel_, Nov 15 2018 *) %o A017788 (Sage) [binomial(72, n) for n in range(17)] # _Zerinvary Lajos_, May 28 2009 %o A017788 (PARI) vector(72, n, n--; binomial(72,n)) \\ _G. C. Greubel_, Nov 15 2018 %o A017788 (Magma) [Binomial(72,n): n in [0..72]]; // _G. C. Greubel_, Nov 15 2018 %o A017788 (GAP) List([0..72], n -> Binomial(72,n)); # _G. C. Greubel_, Nov 15 2018 %Y A017788 Cf. A010926-A011001, A017765-A017787, A017789-A017816. %K A017788 nonn,fini,full,easy %O A017788 0,2 %A A017788 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE