# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a010909 Showing 1-1 of 1 %I A010909 #31 Jul 02 2023 13:46:04 %S A010909 4,25,156,973,6069,37855,236118,1472770,9186303,57298942,357398265, %T A010909 2229247441,13904779737,86730120658,540973246008,3374283935917, %U A010909 21046867223484,131278407014845,818840161120305,5107459975407127,31857435234607602,198708591866413654 %N A010909 Pisot sequence E(4,25): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=25. %D A010909 Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016. %H A010909 Colin Barker, Table of n, a(n) for n = 0..1000 %H A010909 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305 %H A010909 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. %H A010909 S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016) %H A010909 Index entries for linear recurrences with constant coefficients, signature (6, 1, 3). %F A010909 Theorem: a(n) = 6 a(n - 1) + a(n - 2) + 3 a(n - 3). (Conjectured by _Colin Barker_, Jun 05 2016. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - _N. J. A. Sloane_, Sep 09 2016 %F A010909 G.f.: (4+x+2*x^2) / (1-6*x-x^2-3*x^3). (Follows from the recurrence.) %t A010909 RecurrenceTable[{a[0] == 4, a[1] == 25, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 25}] (* _Bruno Berselli_, Sep 03 2013 *) %o A010909 (Magma) Exy:=[4,25]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..25]]; // _Bruno Berselli_, Sep 03 2013 %K A010909 nonn %O A010909 0,1 %A A010909 _Simon Plouffe_ %E A010909 More terms from _Bruno Berselli_, Sep 03 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE