# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a006863 Showing 1-1 of 1 %I A006863 M5150 #65 Sep 08 2022 08:44:35 %S A006863 1,24,240,504,480,264,65520,24,16320,28728,13200,552,131040,24,6960, %T A006863 171864,32640,24,138181680,24,1082400,151704,5520,1128,4455360,264, %U A006863 12720,86184,13920,1416,6814407600,24 %N A006863 Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers. %C A006863 Carmichael defines lambda(n) to be the exponent of the group U(n) of units of the integers mod n. He shows that given m there is a number lambda^*(m) such that lambda(n) divides m if and only if n divides lambda^*(m). He gives a formula for lambda^*(m), equivalent to the one I've quoted for even m. (We have lambda^*(m)=2 for any odd m.) The present sequence gives the values of lambda^*(2m) for positive integers m. - _Peter J. Cameron_, Mar 25 2002 %C A006863 (-1)^n*B_{2n}/(-4n) = Integral_{t>=0} t^(2n-1)/(exp(2*Pi*t) - 1)dt. - _Benoit Cloitre_, Apr 04 2002 %C A006863 Michael Lugo (see link) conjectures, and Peter McNamara proves, that a(n) = gcd_{ primes p > 2n+1 } (p^(2n) - 1). - _Tanya Khovanova_, Feb 21 2009 [edited by _Charles R Greathouse IV_, Dec 03 2014] %D A006863 Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Integrals and Asymptotic Expansions, p. 220. %D A006863 F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130. %D A006863 J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 286. %D A006863 Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133. %D A006863 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006863 R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(2n), see p. 303.) %H A006863 T. D. Noe, Table of n, a(n) for n = 0..10000 %H A006863 P. J. Cameron and D. A. Preece, Notes on primitive lambda-roots %H A006863 R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1909-10), 232-238. %H A006863 G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002. %H A006863 Michael Lugo, A little number theory problem (2008) %H A006863 Eric Weisstein's World of Mathematics, Eisenstein Series. %H A006863 Index entries for sequences related to Bernoulli numbers. %F A006863 B_{2k}/(4k) = -(1/2)*zeta(1-2k). For n > 0, a(n) = gcd k^L (k^{2n}-1) where k ranges over all the integers and L is as large as necessary. %F A006863 Product of 2^{a+2} (where 2^a exactly divides 2*n) and p^{a+1} (where p is an odd prime such that p-1 divides 2*n and p^a exactly divides 2*n). - _Peter J. Cameron_, Mar 25 2002 %p A006863 1,seq(denom(bernoulli(2*n)/(-4*n)), n=1 .. 100); # _Robert Israel_, Dec 03 2014 %t A006863 a[n_] := Denominator[BernoulliB[2n]/(-4n)]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Mar 20 2011 *) %o A006863 (PARI) a(n) = if (n == 0, 1, denominator(bernfrac(2*n)/(-4*n))); \\ _Michel Marcus_, Sep 10 2013 %o A006863 (Magma) [1] cat [Denominator(Bernoulli(2*n)/(-4*n)):n in [1..35]]; // _G. C. Greubel_, Sep 19 2019 %o A006863 (Sage) [1]+[denominator(bernoulli(2*n)/(-4*n)) for n in (1..35)] # _G. C. Greubel_, Sep 19 2019 %o A006863 (GAP) Concatenation([1], List([1..35], n-> DenominatorRat(Bernoulli(2*n)/(-4*n)) )); # _G. C. Greubel_, Sep 19 2019 %Y A006863 Numerators are A001067. %Y A006863 Cf. A000367/A002445, A002322, A079612. %K A006863 nonn,easy,frac,nice %O A006863 0,2 %A A006863 _N. J. A. Sloane_, _Jeffrey Shallit_, _Simon Plouffe_ %E A006863 Thanks to _Michael Somos_ for helpful comments. # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE