# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a006566 Showing 1-1 of 1 %I A006566 M5089 #126 Jan 09 2024 08:47:29 %S A006566 0,1,20,84,220,455,816,1330,2024,2925,4060,5456,7140,9139,11480,14190, %T A006566 17296,20825,24804,29260,34220,39711,45760,52394,59640,67525,76076, %U A006566 85320,95284,105995,117480,129766,142880,156849,171700,187460,204156 %N A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2. %C A006566 Schlaefli symbol for this polyhedron: {5,3}. %C A006566 A093485 = first differences; A124388 = second differences; third differences = 27. - _Reinhard Zumkeller_, Oct 30 2006 %C A006566 One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - _Daniel Forgues_, May 14 2010 %C A006566 From _Peter Bala_, Sep 09 2013: (Start) %C A006566 a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term: %C A006566 Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4; %C A006566 Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4; %C A006566 Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End) %D A006566 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006566 T. D. Noe, Table of n, a(n) for n = 0..1000 %H A006566 Tanya Khovanova, Recursive Sequences. %H A006566 Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75. %H A006566 Victor Meally, Letter to N. J. A. Sloane, no date. %H A006566 Ed Pegg Jr, Dodecahedral 2024. %H A006566 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A006566 Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992. %H A006566 Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018. %H A006566 Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018. %H A006566 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). %F A006566 G.f.: x(1 + 16x + 10x^2)/(1 - x)^4. %F A006566 a(n) = A000292(3n-3) = A054776(n)/6 = n*A060544(n). %F A006566 a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3). %F A006566 a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Harvey P. Dale_, Jul 24 2013 %F A006566 a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - _Peter Bala_, Sep 09 2013 %F A006566 a(n) = A006564(n) + A035006(n). - _Peter M. Chema_, May 04 2016 %F A006566 E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - _Ilya Gutkovskiy_, May 04 2016 %F A006566 From _Amiram Eldar_, Jan 09 2024: (Start) %F A006566 Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421). %F A006566 Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End) %p A006566 A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by _Simon Plouffe_ in his 1992 dissertation %t A006566 Table[n(3n-1)(3n-2)/2,{n,0,100}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *) %t A006566 LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* _Harvey P. Dale_, Jul 24 2013 *) %t A006566 CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 11 2015 *) %o A006566 (PARI) a(n)=n*(3*n-1)*(3*n-2)/2 %o A006566 (Haskell) %o A006566 a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2 %o A006566 a006566_list = scanl (+) 0 a093485_list -- _Reinhard Zumkeller_, Jun 16 2013 %o A006566 (Magma) [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // _Vincenzo Librandi_, Dec 11 2015 %Y A006566 Cf. A027907, A035006, A060544, A093485, A124388, A228887, A228888, A295421. %Y A006566 Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006564 (icosahedral numbers). %K A006566 nonn,easy,nice %O A006566 0,3 %A A006566 _N. J. A. Sloane_ %E A006566 More terms from _Henry Bottomley_, Nov 23 2001 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE