# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a006410
Showing 1-1 of 1
%I A006410 M5102 #17 Apr 05 2021 18:50:28
%S A006410 20,651,8344,64667,361884,1607125,5997992,19535997,57014776,151986562,
%T A006410 375470160,869285378,1902886024,3966657702,7920130544,15220758070,
%U A006410 28268206764,50910912965,89176474920,152305796565,254193384900,415363487955,665644575960,1047743815755
%N A006410 Number of nonseparable rooted toroidal maps with n + 5 edges and n + 1 vertices.
%C A006410 The number of faces is 4. - _Andrew Howroyd_, Apr 05 2021
%D A006410 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006410 Andrew Howroyd, Table of n, a(n) for n = 2..1000
%H A006410 T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
%F A006410 a(n) = 20 * binomial(n + 6, 8) + 471 * binomial(n + 6, 9) + 2734 * binomial(n + 6, 10) + 5388 * binomial(n + 6, 11) + 3264 * binomial(n + 6, 12) [From Walsh]. - _Sean A. Irvine_, Apr 03 2017
%F A006410 a(n) = binomial(n + 6, 8)*(136*n^4 + 790*n^3 + 447*n^2 - 180*n - 24)/495. - _Andrew Howroyd_, Apr 05 2021
%o A006410 (PARI) a(n) = {binomial(n + 6, 8)*(136*n^4 + 790*n^3 + 447*n^2 - 180*n - 24)/495} \\ _Andrew Howroyd_, Apr 05 2021
%Y A006410 Column 4 of A342989.
%K A006410 nonn
%O A006410 2,1
%A A006410 _N. J. A. Sloane_
%E A006410 Terms a(9) and beyond from _Andrew Howroyd_, Apr 05 2021
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE