# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a003152
Showing 1-1 of 1
%I A003152 M2392 #59 Feb 08 2024 16:12:19
%S A003152 1,3,5,6,8,10,11,13,15,17,18,20,22,23,25,27,29,30,32,34,35,37,39,40,
%T A003152 42,44,46,47,49,51,52,54,56,58,59,61,63,64,66,68,69,71,73,75,76,78,80,
%U A003152 81,83,85,87,88,90,92,93,95,97,99,100,102,104,105,107,109,110,112,114,116
%N A003152 A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).
%C A003152 Numbers with an even number of trailing 0's in their minimal representation in terms of the positive Pell numbers (A317204). - _Amiram Eldar_, Mar 16 2022
%D A003152 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003152 G. C. Greubel, Table of n, a(n) for n = 1..10000
%H A003152 L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr. Pellian representations, Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
%H A003152 Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, J. Int. Seq., Vol. 16 (2013), Article 13.1.8; preprint, 2012.
%H A003152 N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
%H A003152 Index entries for sequences related to Beatty sequences.
%p A003152 Digits := 100: t := evalf(1+sin(Pi/4)): A:= n->floor(t*n): seq(floor((t*n)),n=1..68); # _Zerinvary Lajos_, Mar 27 2009
%t A003152 Table[Floor[n (1 + 1/Sqrt[2])], {n, 70}] (* _Vincenzo Librandi_, Dec 26 2015 *)
%o A003152 (Magma) [Floor(n*(1+1/Sqrt(2))): n in [1..70]]; // _Vincenzo Librandi_, Dec 26 2015
%o A003152 (PARI) a(n)=n+sqrtint(2*n^2)\2 \\ _Charles R Greathouse IV_, Jan 25 2022
%Y A003152 Complement of A003151.
%Y A003152 Cf. A109250, A317204.
%Y A003152 The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - _N. J. A. Sloane_, Mar 09 2021
%Y A003152 Bisections: A001952, A001954.
%K A003152 nonn,easy
%O A003152 1,2
%A A003152 _N. J. A. Sloane_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE