# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001953 Showing 1-1 of 1 %I A001953 M0543 N0193 #98 Sep 08 2022 08:44:29 %S A001953 0,2,3,4,6,7,9,10,12,13,14,16,17,19,20,21,23,24,26,27,28,30,31,33,34, %T A001953 36,37,38,40,41,43,44,45,47,48,50,51,53,54,55,57,58,60,61,62,64,65,67, %U A001953 68,70,71,72,74,75,77,78,79,81,82,84,85,86,88,89,91,92,94,95 %N A001953 a(n) = floor((n + 1/2) * sqrt(2)). %C A001953 Let s(n) = zeta(3) - Sum_{k = 1..n} 1/k^3. Conjecture: for n >= 1, s(a(n)) < 1/n^2 < s(a(n)-1), and the difference sequence of A049473 consists solely of 0's and 1's, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively. - _Clark Kimberling_, Oct 05 2014 %D A001953 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001953 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001953 T. D. Noe, Table of n, a(n) for n = 0..10000 %H A001953 Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190. %H A001953 N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence) %F A001953 From _Ralf Steiner_, Oct 23 2019: (Start) %F A001953 a(n) = floor(2*sqrt(A000217(n))). %F A001953 a(n) = A136119(n + 1) - 1. %F A001953 a(n + 1) - a(n) is in {1,2}. %F A001953 a(n + 3) - a(n) is in {4,5}. (End) %p A001953 seq( floor((2*n+1)/sqrt(2)), n=0..100); # _G. C. Greubel_, Nov 14 2019 %t A001953 Table[Floor[(n + 1/2) Sqrt[2]], {n, 0, 100}] (* _T. D. Noe_, Aug 17 2012 *) %o A001953 (PARI) a(n)=floor((n+1/2)*sqrt(2)) %o A001953 (PARI) a(n)={sqrtint(2*n*(n+1))} \\ _Andrew Howroyd_, Oct 24 2019 %o A001953 (Magma) [Floor((2*n+1)/Sqrt(2)): n in [0..100]]; // _G. C. Greubel_, Nov 14 2019 %o A001953 (Sage) [floor((2*n+1)/sqrt(2)) for n in (0..100)] # _G. C. Greubel_, Nov 14 2019 %Y A001953 Complement of A001954. %Y A001953 Cf. A000217 (T), A136119, A001108. %K A001953 nonn %O A001953 0,2 %A A001953 _N. J. A. Sloane_ %E A001953 More terms from _Michael Somos_, Apr 26 2000. # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE