# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001951 Showing 1-1 of 1 %I A001951 M0955 N0356 #162 Oct 02 2024 14:35:24 %S A001951 0,1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,25,26,28,29,31,32,33, %T A001951 35,36,38,39,41,42,43,45,46,48,49,50,52,53,55,56,57,59,60,62,63,65,66, %U A001951 67,69,70,72,73,74,76,77,79,80,82,83,84,86,87,89,90,91,93,94,96,97,98,100 %N A001951 A Beatty sequence: a(n) = floor(n*sqrt(2)). %C A001951 Earliest monotonic sequence greater than 0 satisfying the condition: "a(n) + 2n is not in the sequence". - _Benoit Cloitre_, Mar 25 2004 %C A001951 Also the integer part of the hypotenuse of isosceles right triangles. The real part of these numbers is irrational. For proof see Jones and Jones. %C A001951 First differences are 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, ... (A006337 with a 1 in front). - _Philippe DelĂ©ham_, May 29 2006 %C A001951 It appears that the distance between the a(n)-th triangular number and the nearest square is not greater than floor(a(n)/2). - _Ralf Stephan_, Sep 14 2013 %C A001951 These are the nonnegative integers m satisfying sin(m*Pi/r)*sin((m+1)*Pi/r) <= 0, where r = sqrt(2). In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying sin(m*x)*sin((m+1)*x) <= 0, where x = Pi/r. Thus the numbers m satisfying sin(m*x)*sin((m+1)*x) > 0 form the Beatty sequence of r/(1-r). - _Clark Kimberling_, Aug 21 2014 %C A001951 For n > 0: A080764(a(n)) = 1. - _Reinhard Zumkeller_, Jul 03 2015 %C A001951 From _Clark Kimberling_, Oct 17 2016: (Start) %C A001951 We can generate A001951 and A001952 without using sqrt(2). %C A001951 First write the even positive integers in a row: %C A001951 2 4 6 8 10 12 14 . . . %C A001951 Then put 1 under 2 and add: %C A001951 2 4 6 8 10 12 14 . . . %C A001951 1 %C A001951 3 %C A001951 Next, under 4, put the least positive integer that is not yet in rows 2 and 3; %C A001951 it is 2; and add: %C A001951 2 4 6 8 10 12 14 . . . %C A001951 1 2 %C A001951 3 6 %C A001951 Next, under the 6 in row 1, put the least positive integer not yet in rows 2 and 3; %C A001951 it is 4, and add: %C A001951 2 4 6 8 10 12 14 . . . %C A001951 1 2 4 %C A001951 3 6 10 %C A001951 Continue in this manner. (End) %C A001951 This sequence contains an infinite number of powers of 2 (proof in Crux Mathematicorum link). See A103341. - _Bernard Schott_, Mar 08 2019 %C A001951 The terms of this sequence generate the multiplicative group of positive rational numbers (observation by Stephen M. Gagola, Jr.; see References). - _Allen Stenger_, Aug 05 2023 %C A001951 a(n) is also the number of distinct straight cylinders with integer radius and height having the same surface as a sphere with radius n. - _Felix Huber_, Sep 20 2024 %D A001951 Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153. %D A001951 Stephen M. Gagola Jr., Solution of Problem 12282, Am. Math. Monthly, 130 (2023), pp. 682-683. %D A001951 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77. %D A001951 Gareth A. Jones and J. Mary Jones, Elementary Number Theory, Springer, 1998; pp. 221-222. %D A001951 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001951 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001951 Roland Sprague, Recreations in Mathematics, Blackie and Son, (1963). %D A001951 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), Entry sqrt(2), p. 18. %H A001951 Vincenzo Librandi, Table of n, a(n) for n = 0..10000 %H A001951 L. Carlitz, Richard Scoville and Verner E. Hoggatt, Jr., Pellian representatives, Fib. Quart., 10 (1972), 449-488. %H A001951 Ed Doolittle, Problem 19, 26th I.M.O. Finland proposed by Romania, Crux Mathematicorum, p. 70, Vol. 14, Mar. 88. %H A001951 Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190 %H A001951 Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=2). %H A001951 Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), no. 1-3, pp. 273-279. %H A001951 Wen An Liu and Xiao Zhao, Adjoining to (s,t)-Wythoff's game its P-positions as moves, Discrete Applied Mathematics, Aug 27 2014; See Table 3. %H A001951 Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See pp. 17-18. %H A001951 N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence) %H A001951 Eric Weisstein's World of Mathematics, Beatty Sequence. %H A001951 Index entries for sequences related to Beatty sequences %F A001951 a(n) = A000196(A001105(n)). - _Jason Kimberley_, Oct 26 2016 %F A001951 a(n) = floor(csc(1/(sqrt(2)*n))) for n > 0, since sqrt(2)*n < csc(1/(sqrt(2)*n)) < sqrt(2)*n + 1/(3*sqrt(2)*n) < floor(sqrt(2)*n) + 1 for n > 0. - _Jianing Song_, Sep 07 2021 %F A001951 a(n) = A194102(n) - A194102(n-1) for n > 0. - _M. F. Hasler_, Apr 23 2022 %p A001951 a:=n->floor(n*sqrt(2)): seq(a(n),n=0..80); # _Muniru A Asiru_, Mar 09 2019 %t A001951 Floor[Range[0, 72] Sqrt[2]] (* _Robert G. Wilson v_, Oct 17 2012 *) %o A001951 (PARI) f(n) = for(j=1,n,print1(floor(sqrt(2*j^2))",")) %o A001951 (PARI) a(n)=sqrtint(2*n^2) \\ _Charles R Greathouse IV_, Oct 19 2016 %o A001951 (Magma) [Floor(n*Sqrt(2)): n in [0..60]]; // _Vincenzo Librandi_, Oct 22 2011 %o A001951 (Magma) [Isqrt(2*n^2):n in[0..60]]; // _Jason Kimberley_, Oct 28 2016 %o A001951 (Maxima) makelist(floor(n*sqrt(2)), n, 0, 100); /* _Martin Ettl_, Oct 17 2012 */ %o A001951 (Haskell) %o A001951 a001951 = floor . (* sqrt 2) . fromIntegral %o A001951 -- _Reinhard Zumkeller_, Sep 14 2014 %o A001951 (Python) %o A001951 from sympy import integer_nthroot %o A001951 def A001951(n): return integer_nthroot(2*n**2,2)[0] # _Chai Wah Wu_, Mar 16 2021 %Y A001951 Complement of A001952. Equals A001952(n) - 2*n for n>0. %Y A001951 Equals A003151(n) - n; a bisection of A094077. %Y A001951 Bisections: A022842, A342281. %Y A001951 Cf. A022342, A026250, A080764, A103341. %Y A001951 The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - _N. J. A. Sloane_, Mar 09 2021 %Y A001951 Partial sums: A194102. %K A001951 nonn,nice,easy,changed %O A001951 0,3 %A A001951 _N. J. A. Sloane_ %E A001951 More terms from _David W. Wilson_, Sep 20 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE