# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001485 Showing 1-1 of 1 %I A001485 M4371 N1835 #25 Sep 04 2023 06:08:21 %S A001485 1,-7,21,-35,28,21,-105,181,-189,77,140,-385,546,-511,252,203,-693, %T A001485 1029,-1092,798,-203,-581,1281,-1708,1687,-1232,413,602,-1485,2233, %U A001485 -2366,2009,-1099,14,1099,-2072,2667,-2807,2254,-1477,0,1057,-2346,2744,-3017,2457 %N A001485 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^7 in powers of x. %D A001485 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001485 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001485 Alois P. Heinz, Table of n, a(n) for n = 7..10000 %H A001485 H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440. %H A001485 H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy) %F A001485 a(n) = [x^n] ( QPochhammer(-x) - 1 )^7. - _G. C. Greubel_, Sep 04 2023 %p A001485 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A001485 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A001485 end: %p A001485 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A001485 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A001485 end: %p A001485 a:= n-> b(n, 7): %p A001485 seq(a(n), n=7..52); # _Alois P. Heinz_, Feb 07 2021 %t A001485 nmax = 52; CoefficientList[Series[(Product[(1 - (-x)^j), {j, 1, nmax}] - 1)^7, {x, 0, nmax}], x] // Drop[#, 7] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A001485 Drop[CoefficientList[Series[(QPochhammer[-x] -1)^7, {x,0,102}], x], 7] (* _G. C. Greubel_, Sep 04 2023 *) %o A001485 (Magma) %o A001485 m:=102; %o A001485 R:=PowerSeriesRing(Integers(), m); %o A001485 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^7 )); // _G. C. Greubel_, Sep 04 2023 %o A001485 (SageMath) %o A001485 m=100; k=7; %o A001485 def f(k,x): return (-1 + product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1,m+2) ) )^k %o A001485 def A001485_list(prec): %o A001485 P. = PowerSeriesRing(QQ, prec) %o A001485 return P( f(k,x) ).list() %o A001485 a=A001485_list(m); a[k:] # _G. C. Greubel_, Sep 04 2023 %o A001485 (PARI) my(N=70,x='x+O('x^N)); Vec((eta(-x)-1)^7) \\ _Joerg Arndt_, Sep 04 2023 %Y A001485 Cf. A001482, A001483, A001484, A001486, A001487, A001488, A047638 - A047649, A047654, A047655, A341243. %K A001485 sign %O A001485 7,2 %A A001485 _N. J. A. Sloane_ %E A001485 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE