[go: up one dir, main page]

login
Search: a371906 -id:a371906
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = product of primes p such that floor(n/p) is odd.
+10
4
1, 2, 6, 3, 15, 10, 70, 35, 105, 42, 462, 77, 1001, 286, 4290, 2145, 36465, 24310, 461890, 46189, 969969, 176358, 4056234, 676039, 3380195, 520030, 1560090, 111435, 3231615, 430882, 13357342, 6678671, 220396143, 25928958, 907513530, 151252255, 5596333435, 589087730, 22974421470, 2297442147
OFFSET
1,2
COMMENTS
The only primes in the sequence are 2 and 3.
We can approach the sequence in a manner akin to A260850, a variant of A008336. Set k = 1. Then for all prime factors p | n, if p | k, divide k by p, otherwise multiply k by p. Then we set a(n) = k. This accounts for the "toggling on or off" of prime factors as n increases.
For n >= 1, A055773(n) | a(n), where A055773(n) = A034386(n) / A034386(floor(n/2)).
LINKS
Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048.
FORMULA
a(n) = Product_{k = 1..floor(pi(n)/2)+1} Product_{j = 1+floor(n/(2*k))..floor(n/(2*k-1))} prime(j), where pi(x) = A000720(n).
EXAMPLE
a(1) = 1 since n = 1 is the empty product.
a(2) = 2 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd.
a(3) = 6 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd. Hence a(3) = 2*3 = 6.
a(4) = 3 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(n) = 3.
a(5) = 15 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(n) = 3*5 = 15, etc.
Table relating a(n) with b(n), diagramming prime factors with "x" that produce a(n), or powers of 2 with "x" that sum to b(n), where b(n) = A371906(n).
Prime factor
1111
n b(n) 23571379 b(n)
----------------------------
1 1 . 0
2 2 x 1
3 6 xx 3
4 3 .x 2
5 15 .xx 6
6 10 x.x 5
7 70 x.xx 13
8 35 ..xx 12
9 105 .xxx 14
10 42 xx.x 11
11 462 xx.xx 27
12 77 ...xx 24
13 1001 ...xxx 56
14 286 x...xx 49
15 4290 xxx.xx 55
16 2145 .xx.xx 54
17 36465 .xx.xxx 118
18 24310 x.x.xxx 117
19 461890 x.x.xxxx 245
20 46189 ....xxxx 240
----------------------------
01234567
Power of 2
MATHEMATICA
Table[Times @@ Select[Prime@ Range@ PrimePi[n], OddQ@ Quotient[n, #] &], {n, 40}] (* or *)
Table[Product[Prime[i], {j, 1 + Floor[PrimePi[n]/2]}, {i, 1 + PrimePi[Floor[n/(2 j)]], PrimePi[Floor[n/(2 j - 1)]]}], {n, 40}]
PROG
(PARI) a(n) = vecprod(select(x->((n\x) % 2), primes([1, n]))); \\ Michel Marcus, Apr 16 2024
(SageMath)
print([prod(p for p in prime_range(n + 1) if is_odd(n//p)) for n in range(1, 41)])
# Peter Luschny, Apr 16 2024
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Apr 15 2024
STATUS
approved
a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is even.
+10
2
0, 0, 0, 1, 1, 2, 2, 3, 1, 4, 4, 7, 7, 14, 8, 9, 9, 10, 10, 15, 5, 20, 20, 23, 19, 50, 48, 57, 57, 62, 62, 63, 45, 108, 96, 99, 99, 226, 192, 197, 197, 206, 206, 223, 217, 472, 472, 475, 467, 470, 404, 437, 437, 438, 418, 427, 297, 808, 808, 815, 815, 1838, 1828
OFFSET
1,6
COMMENTS
This is a transform of A372007(n) = s(n). Write the prime indices of k factors prime(k) | s(n) instead as 2^(k-1) and take the sum for all primes p | s(n). Hence, s(14) = 105 = 3*5*7 becomes a(14) = 2^1 + 2^2 + 2^3 = 2 + 4 + 8 = 14.
LINKS
Michael De Vlieger, "Tiger Stripe" Factors of Primorials, ResearchGate, 2024.
Plot powers 2^(i-1) that sum to a(n) at (x,y) = (n,i) for n = 1..2048, 12X vertical exaggeration.
FORMULA
a(n) = A357215(n) - A371906(n).
EXAMPLE
a(1) = 0 since n = 1 is the empty product.
a(2) = 0 since for n = prime(1) = 2, floor(2/2) = 1 is odd. Therefore a(2) = 0.
a(3) = 0 since for n = 3 and prime(1) = 2, floor(3/2) = 1 is odd, and for prime(2) = 3, floor(3/3) = 1 is odd. Hence a(3) = 0.
a(4) = 1 since for n = 4 and prime(1) = 2, floor(4/2) = 2 is even, but for prime(2) = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2^(1-1) = 1.
a(8) = 1 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2^(1-1) + 2^(2-1) = 1 + 2 = 3, etc.
Table relating a(n) with b(n), s(n), and t(n), diagramming powers of 2 with "x" that sum to a(n) or b(n), or prime factors with "x" that produce s(n) or t(n). Sequences s(n) = A372007(n), t(n) = A372000(n), c(n) = A034386(n), b(n) = A371906(n), and c(n) = A357215(n) = a(n) + b(n). Column A (at top) shows powers of 2 that sum to a(n), with B same for b(n), while column S represents prime factors of s(n), T same of t(n).
[A] 2^k [B] 2^k
n 0123 a(n) 012345 b(n) c(n) s(n) t(n) v(n)
--------------------------------------------------------
1 . 0 . 0 2^0-1 1 1 P(0)
2 . 0 x 1 2^1-1 1 2 P(1)
3 . 0 xx 3 2^2-1 1 6 P(2)
4 x 1 .x 2 2^2-1 2 3 P(2)
5 x 1 .xx 6 2^3-1 2 15 P(3)
6 .x 2 x.x 5 2^3-1 3 10 P(3)
7 .x 2 x.xx 13 2^4-1 3 70 P(4)
8 xx 3 ..xx 12 2^4-1 6 35 P(4)
9 x 1 .xxx 14 2^4-1 2 105 P(4)
10 ..x 4 xx.x 11 2^4-1 5 42 P(4)
11 ..x 4 xx.xx 27 2^5-1 5 462 P(5)
12 xxx 7 ...xx 24 2^5-1 30 77 P(5)
13 xxx 7 ...xxx 56 2^6-1 30 1001 P(6)
14 .xxx 14 x...xx 49 2^6-1 105 286 P(6)
15 ...x 8 xxx.xx 55 2^6-1 7 4290 P(6)
16 x..x 9 .xx.xx 54 2^6-1 14 2145 P(6)
--------------------------------------------------------
2357 [T] 11
[S] 235713
MATHEMATICA
Table[Total[2^(-1 + Select[Range@ PrimePi[n], EvenQ@ Quotient[n, Prime[#]] &])], {n, 50}]
PROG
(PARI) a(n) = my(vp=primes([1, n])); vecsum(apply(x->2^(x-1), Vec(select(x->(((n\x) % 2)==0), vp, 1)))); \\ Michel Marcus, Apr 30 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Apr 17 2024
STATUS
approved
a(n) = product of those prime(k) such that floor(n/prime(k)) is even.
+10
2
1, 1, 1, 2, 2, 3, 3, 6, 2, 5, 5, 30, 30, 105, 7, 14, 14, 21, 21, 210, 10, 55, 55, 330, 66, 429, 143, 2002, 2002, 15015, 15015, 30030, 910, 7735, 221, 1326, 1326, 12597, 323, 3230, 3230, 33915, 33915, 746130, 49742, 572033, 572033, 3432198, 490314, 1225785, 24035
OFFSET
1,4
COMMENTS
The only primes in the sequence are 2, 3, 5, and 7.
LINKS
Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048, 12X vertical exaggeration.
Michael De Vlieger, "Tiger Stripe" Factors of Primorials, ResearchGate, 2024.
FORMULA
a(n) = A034386(n) / A372000(n).
a(n) = Product_{k = 1..pi(n)} Product_{j = 1+floor(n/(2*k+1))..floor(n/(2*k))} prime(j), where pi(x) = A000720(n).
EXAMPLE
a(1) = 1 since n = 1 is the empty product.
a(2) = 1 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd.
a(3) = 1 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd.
a(4) = 2 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2.
a(5) = 2 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(5) = 2.
a(8) = 6 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2*3 = 6, etc.
Table relating a(n) with b(n), s(n), and t(n), diagramming prime factors with "x" that produce a(n) or b(n), or powers of 2 with "x" that sum to s(n) or t(n). Sequences b(n) = A372000(n), c(n) = A034386(n), s(n) = A371907(n), t(n) = A371906(n), and v(n) = A357215(n) = s(n) + t(n). Column A represents prime factors of a(n), B same of b(n), while column S (at bottom) shows powers of 2 that sum to s(n), with T same for t(n). P(n) = A002110(n).
[A] [B] 11
n 2357 a(n) 235713 b(n) c(n) s(n) t(n) v(n)
--------------------------------------------------------
1 . 1 . 1 P(0) 0 0 2^0-1
2 . 1 x 2 P(1) 0 1 2^1-1
3 . 1 xx 6 P(2) 0 3 2^2-1
4 x 2 .x 3 P(2) 1 2 2^2-1
5 x 2 .xx 15 P(3) 1 6 2^3-1
6 .x 3 x.x 10 P(3) 2 5 2^3-1
7 .x 3 x.xx 70 P(4) 2 13 2^4-1
8 xx 6 ..xx 35 P(4) 3 12 2^4-1
9 x 2 .xxx 105 P(4) 1 14 2^4-1
10 ..x 5 xx.x 42 P(4) 4 11 2^4-1
11 ..x 5 xx.xx 462 P(5) 4 27 2^5-1
12 xxx 30 ...xx 77 P(5) 7 24 2^5-1
13 xxx 30 ...xxx 1001 P(6) 7 56 2^6-1
14 .xxx 105 x...xx 286 P(6) 14 49 2^6-1
15 ...x 7 xxx.xx 4290 P(6) 8 55 2^6-1
16 x..x 14 .xx.xx 2145 P(6) 9 54 2^6-1
--------------------------------------------------------
0123 012345
[S] 2^k [T] 2^k
MATHEMATICA
Table[Times @@ Select[Prime@ Range@ PrimePi[n], EvenQ@ Quotient[n, #] &], {n, 51}] (* or *)
Table[Product[Prime[i], {j, PrimePi[n]}, {i, 1 + PrimePi[Floor[n/(2 j + 1)]], PrimePi[Floor[n/(2 j)]]}], {n, 51}]
PROG
(PARI) a(n) = my(vp=primes([1, n])); vecprod(select(x->(((n\x) % 2)==0), vp)); \\ Michel Marcus, Apr 30 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Apr 17 2024
STATUS
approved

Search completed in 0.009 seconds