Displaying 1-9 of 9 results found.
page
1
a(n) = 1 if there is no prime p such that p^p divides A342001(n), otherwise 0.
+10
10
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1
COMMENTS
Question: What is the asymptotic mean of this sequence?
FORMULA
For all n >= 1, a(n) >= A368912(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
CROSSREFS
Characteristic function of A368904, whose complement A368996 gives the positions of 0's.
a(n) = 1 if there is no prime p such that p^p divides the arithmetic derivative of n, and 0 otherwise.
+10
9
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
COMMENTS
Question: What is the asymptotic mean of this sequence (and its complement A341996)? Knowing the value for A360111 would solve this. See also related sequences like A354874 and A368916.
FORMULA
For all n >= 1, a(n) >= A354874(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
CROSSREFS
Characteristic function of A358215.
a(n) = 1 if k-th arithmetic derivative of A276086(n) is zero for some k, otherwise 0.
+10
7
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
CROSSREFS
Characteristic function of A328116.
a(n) = 1 if there is no prime p such that p^p divides n, but for the arithmetic derivative of n such a prime exists, otherwise a(n) = 0; a(1) = 0 by convention.
+10
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
COMMENTS
Question: Is the asymptotic mean of this sequence 1 - Product_{p prime} (1 - 1/p^(1+p)) = 0.13585792767780221591...? (I.e. complementary to that of A368916). But see also A368911. - Antti Karttunen, Jan 29 2024
FORMULA
a(n) = [-1 == A256750(n)], where [ ] is the Iverson bracket.
EXAMPLE
a(12) = 0, because for both 12 and 12' = A003415(12) = 16 there is a prime p (in both cases p=2) such that p^p divides them.
a(15) = 1, because 15 = 3*5 has no such prime divisor p that p^p would divide it, while 15' = 8 is divisible by 2^2.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); q[n_] := AllTrue[FactorInteger[n], Last[#] < First[#] &]; q[1] = True; a[1] = 0; a[n_] := If[q[n] && ! q[d[n]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 31 2023 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
CROSSREFS
Characteristic function of A327934.
After n=1 differs from A360109 for the next time at n=81, where a(81) = 0, while A360109(81) = 1.
Differs from A353479 for the first time at n=158, where a(158) = 1, while A353479(158) = 1.
a(n) = 1 if A342001( A005940(1+n)) is not divisible by p^p for any prime p, otherwise 0.
+10
4
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
Numbers k for which there is no prime p such that p^p divides the arithmetic derivative of A276086(k), where A276086 is the primorial base exp-function.
+10
4
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93
CROSSREFS
Cf. A003415, A048103, A276086, A341996, A327860, A342002, A342019, A359550, A368915, A368916 (characteristic function), A368918 (its partial sums).
Cf. A328116 (subsequence, after its initial zero).
a(n) is the number of integers m in the range 0..n such that the arithmetic derivative of A276086(m) has no divisors of the form p^p.
+10
4
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 71, 72
FORMULA
For all n >= 0, a(n) >= A328307(n) - 1.
PROG
(PARI)
up_to = 65537;
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368918list(up_to) = { my(v=vector(up_to), s= A368916(0)); for(i=1, up_to, s +=
v368918 = A368918list(up_to);
A368918(n) = if(!n, 0, v368918[n]);
Number of terms of A368917 less than 10^n, where A368917 lists the numbers k for which there is no prime p such that p^p divides the arithmetic derivative of A276086(k), where A276086 is the primorial base exp-function.
+10
3
8, 88, 863, 8634, 86407, 864150, 8641439, 86414292
COMMENTS
Value a(n) / 10^n seems to converge to 1 - lim_{n->oo} ( A368911(n) / 10^n).
PROG
(PARI)
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
tp=10; s=0; for(n=1, 10^10, s+= A368916(n); if(1+n==tp, print1(s, ", "), if(n==tp, tp *= 10)));
a(n) = 1 if there is no prime p such that p^p divides n' / gcd(n,n'), and 0 otherwise, where n' stands for the arithmetic derivative of n, A003415(n).
+10
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
COMMENTS
Question: Is there a formula for the asymptotic mean, which seems to be around 0.813...? Consider A369004 and A369007.
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
Search completed in 0.007 seconds
|