[go: up one dir, main page]

login
Search: a368916 -id:a368916
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 1 if there is no prime p such that p^p divides A342001(n), otherwise 0.
+10
10
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
Question: What is the asymptotic mean of this sequence?
Answer: Apparently about 0.77... See A368920. - Antti Karttunen, Jan 14 2024
FORMULA
a(1) = 0, and for n > 1, a(n) = A359550(A342001(n)).
a(n) = A368913(n) + A368915(n).
For all n >= 1, a(n) >= A368912(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368914(n) = ((n>1)&&A359550(A342001(n)));
CROSSREFS
Characteristic function of A368904, whose complement A368996 gives the positions of 0's.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2024
STATUS
approved
a(n) = 1 if there is no prime p such that p^p divides the arithmetic derivative of n, and 0 otherwise.
+10
9
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
OFFSET
1
COMMENTS
Question: What is the asymptotic mean of this sequence (and its complement A341996)? Knowing the value for A360111 would solve this. See also related sequences like A354874 and A368916.
FORMULA
a(1) = 0; for n > 1, a(n) = A359550(A003415(n)).
For all n > 1, a(n) = 1 - A341996(n) = A359550(n) - A360111(n).
For all n > 1, A359550(n) >= a(n) >= A328308(n).
For all n >= 1, a(n) >= A354874(n).
a(n) = A368914(n) - A368913(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368915(n) = ((n>1)&&A359550(A003415(n)));
CROSSREFS
Characteristic function of A358215.
Cf. A003415, A328308, A341996 (one's complement), A354874, A359550, A360111, A368913, A368914, A368916 [= a(A276086(n))].
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2024
STATUS
approved
a(n) = 1 if k-th arithmetic derivative of A276086(n) is zero for some k, otherwise 0.
+10
7
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
0
COMMENTS
a(n) = 1 if A276086(n) is in A099308, 0 otherwise.
Question: Does the sequence have asymptotic mean? See also A328307 and A351071. - Antti Karttunen, Jan 10 2024
FORMULA
a(n) = A328308(A276086(n)).
For n > 0, a(n) <= A368916(n). - Antti Karttunen, Jan 10 2024
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
CROSSREFS
Characteristic function of A328116.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved
a(n) = 1 if there is no prime p such that p^p divides n, but for the arithmetic derivative of n such a prime exists, otherwise a(n) = 0; a(1) = 0 by convention.
+10
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
1
COMMENTS
Question: What is the asymptotic mean of this and sequences like A341996 and its complement A368915, and related A368916? - Antti Karttunen, Jan 11 2024
Question: Is the asymptotic mean of this sequence 1 - Product_{p prime} (1 - 1/p^(1+p)) = 0.13585792767780221591...? (I.e. complementary to that of A368916). But see also A368911. - Antti Karttunen, Jan 29 2024
FORMULA
a(n) = A359550(n) * A341996(n).
a(n) = [-1 == A256750(n)], where [ ] is the Iverson bracket.
For n > 1, a(n) = A359550(n) - A368915(n). - Antti Karttunen, Jan 11 2024
EXAMPLE
a(12) = 0, because for both 12 and 12' = A003415(12) = 16 there is a prime p (in both cases p=2) such that p^p divides them.
a(15) = 1, because 15 = 3*5 has no such prime divisor p that p^p would divide it, while 15' = 8 is divisible by 2^2.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); q[n_] := AllTrue[FactorInteger[n], Last[#] < First[#] &]; q[1] = True; a[1] = 0; a[n_] := If[q[n] && ! q[d[n]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 31 2023 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A360111(n) = ((n>1)&&A359550(n)&&!A359550(A003415(n)));
CROSSREFS
Characteristic function of A327934.
After n=1 differs from A360109 for the next time at n=81, where a(81) = 0, while A360109(81) = 1.
Differs from A353479 for the first time at n=158, where a(158) = 1, while A353479(158) = 1.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 31 2023
STATUS
approved
a(n) = 1 if A342001(A005940(1+n)) is not divisible by p^p for any prime p, otherwise 0.
+10
4
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1
OFFSET
0
FORMULA
a(0) = 0, and for n > 0, a(n) = A359550(A366801(n)) = A368914(A005940(1+n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A342001(n) = (A003415(n) / A003557(n));
A366801(n) = A342001(A005940(1+n));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368905(n) = if(!n, 0, A359550(A366801(n)));
CROSSREFS
Cf. also A368907, A368916.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2024
STATUS
approved
Numbers k for which there is no prime p such that p^p divides the arithmetic derivative of A276086(k), where A276086 is the primorial base exp-function.
+10
4
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93
OFFSET
1,2
COMMENTS
Numbers k such that A327860(k) [or equally, A342002(k)] is in A048103.
FORMULA
For n >= 1, A368918(a(n)) = n.
PROG
(PARI) \\ See A368916.
CROSSREFS
Complement of A342018.
Cf. A003415, A048103, A276086, A341996, A327860, A342002, A342019, A359550, A368915, A368916 (characteristic function), A368918 (its partial sums).
Cf. A328116 (subsequence, after its initial zero).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2024
STATUS
approved
a(n) is the number of integers m in the range 0..n such that the arithmetic derivative of A276086(m) has no divisors of the form p^p.
+10
4
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 71, 72
OFFSET
0,3
FORMULA
a(0) = 0, for n > 0, a(n) = a(n-1) + A368916(n) = a(n-1) + A359550(A327860(n)).
For all n >= 1, a(A368917(n)) = n.
For all n >= 0, a(n) >= A328307(n) - 1.
PROG
(PARI)
up_to = 65537;
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368916(n) = { my(u=A276086(n)); ((u>1)&&A359550(A003415(u))); };
A368918list(up_to) = { my(v=vector(up_to), s=A368916(0)); for(i=1, up_to, s +=
A368916(i); v[i] = s); (v); };
v368918 = A368918list(up_to);
A368918(n) = if(!n, 0, v368918[n]);
CROSSREFS
Partial sums of A368916.
Left inverse of A368917.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 10 2024
STATUS
approved
Number of terms of A368917 less than 10^n, where A368917 lists the numbers k for which there is no prime p such that p^p divides the arithmetic derivative of A276086(k), where A276086 is the primorial base exp-function.
+10
3
8, 88, 863, 8634, 86407, 864150, 8641439, 86414292
OFFSET
1,1
COMMENTS
Value a(n) / 10^n seems to converge to 1 - lim_{n->oo} (A368911(n) / 10^n).
PROG
(PARI)
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368916(n) = ((n>0)&&A359550(A327860(n)));
tp=10; s=0; for(n=1, 10^10, s+=A368916(n); if(1+n==tp, print1(s, ", "), if(n==tp, tp *= 10)));
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Jan 14 2024
STATUS
approved
a(n) = 1 if there is no prime p such that p^p divides n' / gcd(n,n'), and 0 otherwise, where n' stands for the arithmetic derivative of n, A003415(n).
+10
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
Question: Is there a formula for the asymptotic mean, which seems to be around 0.813...? Consider A369004 and A369007.
FORMULA
a(1) = 0, for n > 1, a(n) = A359550(A083345(n)).
A368914(n) <= a(n) <= 1 - A369004(n).
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A369006(n) = if(1==n, 0, A359550(A083345(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 14 2024
STATUS
approved

Search completed in 0.007 seconds