[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a362619 -id:a362619
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A237824 Number of partitions of n such that 2*(least part) >= greatest part. +10
29
1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
By conjugation, also the number of integer partitions of n whose greatest part appears at a middle position, namely at k/2, (k+1)/2, or (k+2)/2 where k is the number of parts. These partitions have ranks A362622. - Gus Wiseman, May 14 2023
LINKS
FORMULA
G.f.: Sum_{m>0} x^m/(1-x^m) + Sum_{i>0} Sum_{j=1..i} x^((2*i)+j) / Product_{k=0..j} (1 - x^(k+i)). - John Tyler Rascoe, Mar 07 2024
EXAMPLE
a(6) = 7 counts these partitions: 6, 42, 33, 222, 2211, 21111, 111111.
From Gus Wiseman, May 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (42) (322) (53)
(1111) (2111) (222) (2221) (332)
(11111) (2211) (22111) (422)
(21111) (211111) (2222)
(111111) (1111111) (22211)
(221111)
(2111111)
(11111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (331) (71)
(2211) (2221) (332)
(111111) (1111111) (2222)
(3311)
(22211)
(11111111)
(End)
MATHEMATICA
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *)
PROG
(PARI)
N=60; x='x+O('x^N);
gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i))));
Vec(gf) \\ John Tyler Rascoe, Mar 07 2024
CROSSREFS
The complement is counted by A237820, ranks A362982.
For modes instead of middles we have A362619, counted by A171979.
These partitions have ranks A362981.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 16 2014
STATUS
approved
A362621 One and numbers whose multiset of prime factors (with multiplicity) has the same median as maximum. +10
10
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
First differs from A334965 in having 750 and lacking 2250.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
LINKS
EXAMPLE
The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is in the sequence.
The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is not in the sequence.
The terms together with their prime indices begin:
1: {} 25: {3,3} 64: {1,1,1,1,1,1}
2: {1} 27: {2,2,2} 67: {19}
3: {2} 29: {10} 71: {20}
4: {1,1} 31: {11} 73: {21}
5: {3} 32: {1,1,1,1,1} 75: {2,3,3}
7: {4} 37: {12} 79: {22}
8: {1,1,1} 41: {13} 81: {2,2,2,2}
9: {2,2} 43: {14} 83: {23}
11: {5} 47: {15} 89: {24}
13: {6} 49: {4,4} 97: {25}
16: {1,1,1,1} 50: {1,3,3} 98: {1,4,4}
17: {7} 53: {16} 101: {26}
18: {1,2,2} 54: {1,2,2,2} 103: {27}
19: {8} 59: {17} 107: {28}
23: {9} 61: {18} 108: {1,1,2,2,2}
MATHEMATICA
Select[Range[100], (y=Flatten[Apply[ConstantArray, FactorInteger[#], {1}]]; Max@@y==Median[y])&]
CROSSREFS
Partitions of this type are counted by A053263.
For mode instead of median we have A362619, counted by A171979.
For parts at middle position (instead of median) we have A362622.
The complement is A362980, counted by A237821.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2023
STATUS
approved
A362622 One and numbers whose prime factorization has its greatest part at a middle position. +10
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
EXAMPLE
The prime factorization of 150 is 5*5*3*2, with middle parts {3,5}, so 150 is in the sequence.
The prime factorization of 90 is 5*3*3*2, with middle parts {3,3}, so 90 is not in the sequence.
MATHEMATICA
mpm[q_]:=MemberQ[If[OddQ[Length[q]], {Median[q]}, {q[[Length[q]/2]], q[[Length[q]/2+1]]}], Max@@q];
Select[Range[100], #==1||mpm[Flatten[Apply[ConstantArray, FactorInteger[#], {1}]]]&]
CROSSREFS
Partitions of this type are counted by A237824.
For modes instead of middles we have A362619, counted by A171979.
The version for median instead of middles is A362621, counted by A053263.
The complement for median is A362980, counted by A237821.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization.
A362613 counts co-modes in prime factorization.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2023
STATUS
approved
A362620 Numbers whose greatest prime factor is not a mode, meaning it appears fewer times than some other. +10
7
12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
First differs from A112769 in lacking 300.
LINKS
Wikipedia, Mode (statistics).
EXAMPLE
The prime factorization of 90 is 2*3*3*5, with modes {3} and maximum 5, so 90 is in the sequence.
MAPLE
filter:= proc(n) local F;
F:= sort(ifactors(n)[2], (a, b) -> a[1]<b[1]);
F[-1, 2] < max(F[.., 2])
end proc:
select(filter, [$2..300]); # Robert Israel, Dec 15 2023
MATHEMATICA
prifacs[n_]:=If[n==1, {}, Flatten[ConstantArray@@@FactorInteger[n]]];
Select[Range[2, 100], FreeQ[Commonest[prifacs[#]], Max[prifacs[#]]]&]
CROSSREFS
Partitions of this type are counted by A240302.
The complement is A362619, counted by A171979.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362605 ranks partitions with a more than one mode, counted by A362607.
A362606 ranks partitions with a more than one co-mode, counted by A362609.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
A362621 ranks partitions with median equal to maximum, counted by A053263.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2023
STATUS
approved
A362980 Numbers whose multiset of prime factors (with multiplicity) has different median from maximum. +10
4
6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
LINKS
EXAMPLE
The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is not in the sequence.
The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is in the sequence.
The terms together with their prime indices begin:
6: {1,2} 36: {1,1,2,2} 60: {1,1,2,3}
10: {1,3} 38: {1,8} 62: {1,11}
12: {1,1,2} 39: {2,6} 63: {2,2,4}
14: {1,4} 40: {1,1,1,3} 65: {3,6}
15: {2,3} 42: {1,2,4} 66: {1,2,5}
20: {1,1,3} 44: {1,1,5} 68: {1,1,7}
21: {2,4} 45: {2,2,3} 69: {2,9}
22: {1,5} 46: {1,9} 70: {1,3,4}
24: {1,1,1,2} 48: {1,1,1,1,2} 72: {1,1,1,2,2}
26: {1,6} 51: {2,7} 74: {1,12}
28: {1,1,4} 52: {1,1,6} 76: {1,1,8}
30: {1,2,3} 55: {3,5} 77: {4,5}
33: {2,5} 56: {1,1,1,4} 78: {1,2,6}
34: {1,7} 57: {2,8} 80: {1,1,1,1,3}
35: {3,4} 58: {1,10} 82: {1,13}
MATHEMATICA
Select[Range[100], (y=Flatten[Apply[ConstantArray, FactorInteger[#], {1}]]; Max@@y!=Median[y])&]
CROSSREFS
Partitions of this type are counted by A237821.
For mode instead of median we have A362620, counted by A240302.
The complement is A362621, counted by A053263.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2023
STATUS
approved
A362981 Heinz numbers of integer partitions such that 2*(least part) >= greatest part. +10
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 91, 96, 97, 101, 103, 105, 107, 108, 109, 113, 119, 121, 125 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
By conjugation, also Heinz numbers of partitions whose greatest part appears at a middle position, namely k/2, (k+1)/2, or (k+2)/2, where k is the number of parts. These partitions have ranks A362622.
LINKS
EXAMPLE
The terms together with their prime indices begin:
1: {} 16: {1,1,1,1} 36: {1,1,2,2}
2: {1} 17: {7} 37: {12}
3: {2} 18: {1,2,2} 41: {13}
4: {1,1} 19: {8} 43: {14}
5: {3} 21: {2,4} 45: {2,2,3}
6: {1,2} 23: {9} 47: {15}
7: {4} 24: {1,1,1,2} 48: {1,1,1,1,2}
8: {1,1,1} 25: {3,3} 49: {4,4}
9: {2,2} 27: {2,2,2} 53: {16}
11: {5} 29: {10} 54: {1,2,2,2}
12: {1,1,2} 31: {11} 55: {3,5}
13: {6} 32: {1,1,1,1,1} 59: {17}
15: {2,3} 35: {3,4} 61: {18}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], 2*Min@@prix[#]>=Max@@prix[#]&]
CROSSREFS
For prime factors instead of indices we have A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
The complement is A362982, counted by A237820.
Partitions of this type are counted by A237824.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 14 2023
STATUS
approved
A362982 Heinz numbers of partitions such that 2*(least part) < greatest part. +10
3
10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
LINKS
EXAMPLE
The terms together with their prime indices begin:
10: {1,3} 44: {1,1,5} 70: {1,3,4}
14: {1,4} 46: {1,9} 74: {1,12}
20: {1,1,3} 50: {1,3,3} 76: {1,1,8}
22: {1,5} 51: {2,7} 78: {1,2,6}
26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3}
28: {1,1,4} 56: {1,1,1,4} 82: {1,13}
30: {1,2,3} 57: {2,8} 84: {1,1,2,4}
33: {2,5} 58: {1,10} 85: {3,7}
34: {1,7} 60: {1,1,2,3} 86: {1,14}
38: {1,8} 62: {1,11} 87: {2,10}
39: {2,6} 66: {1,2,5} 88: {1,1,1,5}
40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3}
42: {1,2,4} 69: {2,9} 92: {1,1,9}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], 2*Min@@prix[#]<Max@@prix[#]&]
CROSSREFS
For prime factors instead of indices we have A069900, complement A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
Partitions of this type are counted by A237820.
The complement is A362981, counted by A237824.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 14 2023
STATUS
approved
A363223 Numbers with bigomega equal to median prime index. +10
2
2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
FORMULA
2*A001222(a(n)) = A360005(a(n)).
EXAMPLE
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
50: {1,3,3}
70: {1,3,4}
75: {2,3,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
130: {1,3,6}
165: {2,3,5}
170: {1,3,7}
175: {3,3,4}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], PrimeOmega[#]==Median[prix[#]]&]
CROSSREFS
For maximum instead of median we have A106529, counted by A047993.
For minimum instead of median we have A324522, counted by A006141.
Partitions of this type are counted by A361800.
For twice median we have A362050, counted by A362049.
For maximum instead of length we have A362621, counted by A053263.
A000975 counts subsets with integer median.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 29 2023
STATUS
approved
page 1

Search completed in 0.010 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 13:06 EDT 2024. Contains 375543 sequences. (Running on oeis4.)