OFFSET
1,2
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e) = Sum_{d|e} p^d if e is odd, and (Sum_{d|e} p^d) - p^(e/2) if e is even.
a(n) >= n, with equality if and only if n is cubefree (A004709).
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p)*(1 + Sum_{e>=1} Sum_{d|e, d != e/2}, p^(d-2*e))) = 0.5124353304539905... .
EXAMPLE
a(8) = 10 since 8 has 2 divisors that are both bi-unitary and exponential, 2 and 8, and 2 + 8 = 10.
MATHEMATICA
f[p_, e_] := DivisorSum[e, p^# &] - If[OddQ[e], 0, p^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(p, e) = sumdiv(e, d, p^d*(2*d != e));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 1], f[i, 2])); }
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 05 2023
STATUS
approved