[go: up one dir, main page]

login
Search: a360886 -id:a360886
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. satisfies A(x) = 1 + x*A(x+x^2).
+10
10
1, 1, 1, 2, 4, 11, 33, 114, 438, 1845, 8458, 41823, 221539, 1250269, 7481758, 47278652, 314374316, 2192798077, 16000160519, 121831654450, 965946444587, 7958739329386, 68023023892680, 602115897105136, 5511499584735858
OFFSET
0,4
COMMENTS
Equals eigensequence of triangle A026729. - Gary W. Adamson, Jan 16 2009
In Barry[2011] on page 9 is Example 12 where the first column of the eigentriangle of the skew binomial matrix is this sequence. - Michael Somos, Oct 03 2024
LINKS
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k,k) * a(n-1-k) for n>0 with a(0)=1. [corrected by Seiichi Manyama, Feb 25 2023]
a(n) ~ c * Bell(n) * LambertW(n) / (n*exp(LambertW(n)^2/2)), where c = 1.93210869..., or a(n) ~ c * exp(n/LambertW(n) - LambertW(n)^2/2 - 1 - n) * n^(n-1) / (LambertW(n)^(n-1) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Mar 12 2014
a(n) = Sum_{k=0..n-1} binomial(k, n-k-1) * a(k) for n>0 with a(0)=1. (from Barry[2011]) - Michael Somos, Oct 03 2024
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 114*x^7 + ... - Michael Somos, Oct 03 2024
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*binomial(n-i, i-1), i=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
MATHEMATICA
nmax = 20; b = ConstantArray[0, nmax]; b[[1]] = 1; Do[b[[n+2]] = Sum[Binomial[n-k, k]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax-2}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
a[ n_] := If[n<1, Boole[n==0], a[n] = Sum[Binomial[k, n-1-k] * a[k], {k, 0, n-1}]]; (* Michael Somos, Oct 03 2024 *)
PROG
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, x+x^2)); polcoeff(A, n)
(PARI) a(n)=if(n==0, 1, sum(k=0, (n-1)\2, binomial(n-1-k, k)*a(n-1-k))); \\ corrected by Seiichi Manyama, Feb 25 2023
(PARI) {a(n) = my(A = 1 + O(x)); for(k=1, n, A = 1 + x*subst(A, x, x+x^2)); polcoeff(A, n)}; /* Michael Somos, Oct 03 2024 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2007
STATUS
approved
G.f. satisfies A(x) = 1 + x * A(x * (1 + x^2)).
+10
5
1, 1, 1, 1, 2, 4, 7, 16, 39, 93, 246, 671, 1884, 5578, 16887, 52854, 170649, 563703, 1914366, 6649798, 23610987, 85689987, 317054427, 1196183592, 4595744763, 17965311672, 71426213637, 288535755417, 1183807706841, 4929801601890, 20825803784129, 89210585925338
OFFSET
0,5
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1-2*k,k) * a(n-1-2*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1-2*j, j)*v[i-2*j])); v;
CROSSREFS
Cf. A360896.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved
G.f. satisfies A(x) = 1 + x * A(x * (1 - x^3)).
+10
3
1, 1, 1, 1, 1, 0, -2, -5, -9, -8, 7, 48, 120, 161, -18, -798, -2486, -4088, -692, 19840, 71159, 130467, 31737, -688014, -2644266, -5066453, -866551, 31217375, 121457519, 231494879, -10834753, -1756652362, -6638239650, -12044755426, 5372265122, 117373545212
OFFSET
0,7
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (-1)^k * binomial(n-1-3*k,k) * a(n-1-3*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, (-1)^j*binomial(i-1-3*j, j)*v[i-3*j])); v;
CROSSREFS
Cf. A360886.
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved

Search completed in 0.008 seconds