[go: up one dir, main page]

login
Search: a360572 -id:a360572
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the path graph on n-vertices, n >= 1, 0 <= k <= 2*n - 1.
+10
12
1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 5, 17, 33, 48, 48, 33, 17, 5, 1, 1, 6, 24, 58, 107, 140, 140, 107, 58, 24, 6, 1, 1, 7, 32, 92, 203, 329, 424, 424, 329, 203, 92, 32, 7, 1, 1, 8, 41, 136, 347, 668, 1039, 1280, 1280, 1039, 668, 347, 136, 41, 8, 1
OFFSET
1,4
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Path Graph.
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1: 1 1
n=2: 1 2 2 1
n=3: 1 3 6 6 3 1
n=4: 1 4 11 16 16 11 4 1
n=5: 1 5 17 33 48 48 33 17 5 1
n=6: 1 6 24 58 107 140 140 107 58 24 6 1
n=7: 1 7 32 92 203 329 424 424 329 203 92 32 7 1
n=8: 1 8 41 136 347 668 1039 1280 1280 1039 668 347 136 41 8 1
PROG
(SageMath)
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra
def LieAlgebraFromGraph(G, Module = QQ):
''' Takes a graph and a module (optional) as an input.'''
d = {}
for edge in G.edges(): # this defines the relations among the generators of the Lie algebra
key = ("x" + str(edge[0]), "x" + str(edge[1])) #[x_i, x_j]
value = {"x_" + str(edge[0]) + "_" + str(edge[1]): 1} #x_{i, j}
d[key] = value #appending to the dictionary d
C = LieAlgebras(Module).WithBasis().Graded() #defines the category that we need to work with.
C = C.FiniteDimensional().Stratified().Nilpotent() #specifies that the algebras we want should be finite, stratified, and nilpotent
L = LieAlgebra(Module, d, nilpotent=True, category=C)
def sort_generators_by_grading(lie_algebra, grading_operator): #this sorts the generators by their grading. In this case, V1 are vertices and V2
generators = lie_algebra.gens()
grading = [grading_operator(g) for g in generators] #using the grading operator to split the elements into their respective vector spaces
sorted_generators = [g for _, g in sorted(zip(grading, generators))]
grouped_generators = {}
for g in sorted_generators:
if grading_operator(g) in grouped_generators:
grouped_generators[grading_operator(g)].append(g)
else:
grouped_generators[grading_operator(g)] = [g]
return grouped_generators
grading_operator = lambda g: g.degree() #defining the grading operator
grouped_generators = sort_generators_by_grading(L, grading_operator) #evaluating the function to pull the generators apart
V1 = grouped_generators[1] #elements from vertices
V2 = grouped_generators[2] #elements from edges
return L #, V1, V2 #returns the Lie algebra and the two vector spaces
def betti_numbers(lie_algebra): #this function will calculate the Lie theoretic Betti numbers and return them as a list
dims = []
H = lie_algebra.cohomology()
for n in range(lie_algebra.dimension() + 1):
dims.append(H[n].dimension())
return dims
def A360571_row(n):
if n == 1: return [1, 1]
return betti_numbers(LieAlgebraFromGraph(graphs.PathGraph(n)))
for n in range(1, 7): print(A360571_row(n))
CROSSREFS
Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).
Cf. A063782 appears to be half the row sum.
KEYWORD
nonn,tabf
AUTHOR
Samuel J. Bevins, Feb 12 2023
STATUS
approved
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of a complete graph on n vertices, n >= 1, k >= 0.
+10
7
1, 1, 1, 2, 2, 1, 1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 40, 176, 440, 835, 1423, 1980, 1980, 1423, 835, 440, 176, 40, 5, 1, 1, 6, 70, 441, 1616, 4600, 11984, 26824, 46800, 63254, 70784, 70784, 63254, 46800, 26824, 11984, 4600, 1616, 441, 70, 6, 1
OFFSET
1,4
LINKS
M. Aldi and S. Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
M. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Complete Graph.
EXAMPLE
Triangle begins:
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1: 1 1
n=2: 1 2 2 1
n=3: 1 3 8 12 8 3 1
n=4: 1 4 20 56 84 90 84 56 20 4 1
n=5: 1 5 40 176 440 835 1423 1980 1980 1423 835 440 176 40 5 1
...
PROG
(SageMath) # uses[betti_numbers, LieAlgebraFromGraph from A360571]
def A360625_row(n):
if n == 1: return [1, 1]
return betti_numbers(LieAlgebraFromGraph(graphs.CompleteGraph(n)))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Samuel J. Bevins, Feb 14 2023
STATUS
approved
Triangle read by rows: T(n, k) is the k-th Lie-Betti number of a wheel graph on n vertices, for n >= 3 and k >= 0.
+10
6
1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 32, 108, 212, 371, 547, 547, 371, 212, 108, 32, 5, 1, 1, 6, 45, 171, 442, 1081, 2025, 2616, 2722, 2616, 2025, 1081, 442, 171, 45, 6, 1, 1, 7, 60, 258, 842, 2489, 5440, 8855, 12955, 16785, 16785, 12955, 8855, 5440, 2489, 842, 258, 60, 7, 1
OFFSET
3,2
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera G. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Wheel Graph.
EXAMPLE
Triangle T(n, k) begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=3: 1 3 8 12 8 3 1
n=4: 1 4 20 56 84 90 84 56 20 4 1
n=5: 1 5 32 108 212 371 547 547 371 212 108 32 5 1
n=6: 1 6 45 171 442 1081 2025 2616 2722 2616 2025 1081 442 171 45 6 1
...
PROG
(SageMath) # uses[betti_numbers, LieAlgebraFromGraph from A360571]
def A360937_row(n):
return betti_numbers(LieAlgebraFromGraph(graphs.WheelGraph(n)))
for n in range(3, 7): print(A360937_row(n))
CROSSREFS
Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A361044 (friendship graph).
KEYWORD
nonn,tabf
AUTHOR
Samuel J. Bevins, Feb 26 2023
STATUS
approved
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the ladder graph on 2*n vertices, n >= 2, k >= 0.
+10
5
1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 6, 32, 89, 204, 357, 437, 437, 357, 204, 89, 32, 6, 1, 1, 8, 54, 207, 680, 1650, 3201, 5310, 6993, 7508, 6993, 5310, 3201, 1650, 680, 207, 54, 8, 1
OFFSET
1,2
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera G. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Ladder Graph.
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1: 1 2 2 1
n=2: 1 4 14 25 28 25 14 4 1
n=3: 1 6 32 89 204 357 437 437 357 204 89 32 6 1
n=4: 1 8 54 207 680 1650 3201 5310 6993 7508 6993 5310 3201 1650 680 207 54
...
PROG
(SageMath) # uses[betti_numbers, LieAlgebraFromGraph from A360571]
def A360936(n):
return betti_numbers(LieAlgebraFromGraph(graphs.LadderGraph(n)))
CROSSREFS
Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360937 (wheel graph)
KEYWORD
nonn,more,tabf
AUTHOR
Samuel J. Bevins, Feb 26 2023
STATUS
approved
Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1.
+10
1
1, 3, 8, 12, 8, 3, 1, 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1, 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1
OFFSET
1,2
COMMENTS
The triangle is inspired by Samuel J. Bevins's A360571.
The friendship graph is constructed by joining n copies of the cycle graph C_3 at a common vertex. F_1 is isomorphic to C_3 (the triangle graph) and has 3 vertices, F_2 is the butterfly graph and has 5 vertices and if n > 2 then F_n has 2*n + 1 vertices.
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera G. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Dutch Windmill Graph.
Wikipedia, Friendship Graph.
EXAMPLE
The triangle T(n, k) starts:
[1] 1, 3, 8, 12, 8, 3, 1;
[2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1;
[3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1;
PROG
(SageMath)
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
def BettiNumbers(graph):
D = {}
for edge in graph.edges():
e = "x" + str(edge[0])
f = "x" + str(edge[1])
D[(e, f)] = {e + f : 1}
C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
Stratified().Nilpotent())
L = LieAlgebra(QQ, D, nilpotent=True, category=C)
H = L.cohomology()
d = L.dimension() + 1
return [H[n].dimension() for n in range(d)]
def A361044_row(n):
return BettiNumbers(graphs.FriendshipGraph(n))
for n in range(1, 4): print(A361044_row(n))
CROSSREFS
Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph).
KEYWORD
nonn,tabf,more
AUTHOR
Peter Luschny, Mar 01 2023
STATUS
approved
Third Lie-Betti number of a cycle graph on n vertices.
+10
1
12, 25, 41, 68, 105, 152, 210, 280, 363, 460, 572, 700, 845, 1008, 1190, 1392, 1615, 1860, 2128, 2420, 2737, 3080, 3450, 3848, 4275, 4732, 5220, 5740, 6293, 6880, 7502, 8160, 8855, 9588, 10360, 11172, 12025, 12920, 13858
OFFSET
3,1
COMMENTS
Sequence T(n,3) in A360572.
LINKS
M. Aldi and S. Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
M. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Cycle Graph.
FORMULA
a(3) = 12, a(4) = 25, a(5) = 41, a(n) = n*(n+11)*(n-2)/6 for n >= 6.
a(n) = A005581(n-4) + A054000(n-1) + A028347(n-2) + A000027(n) for n >= 6.
a(n) = A106058(n+1) - 2 for n >= 6. - Hugo Pfoertner, Jun 02 2023
PROG
(Python)
def A363378(n):
values = [12, 25, 41]
for i in range(6, n+1):
result = (i*(i+11)*(i-2))/6
values.append(result)
return values
CROSSREFS
Cf. A005581, A054000, A028347, A000027, A360572 (cycle graph triangle)
KEYWORD
nonn
AUTHOR
Samuel J. Bevins, Jun 01 2023
STATUS
approved
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the hypercube graph on 2^(n-1) vertices, n >= 1, k >= 0.
+10
0
1, 1, 1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 8, 64, 258, 986, 2870, 6134, 11586, 18830, 23832, 25078, 23832, 18830, 11586, 6134, 2870, 986, 258, 64, 8, 1
OFFSET
1,4
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Hypercube Graph.
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=1: 1 1
n=2: 1 2 2 1
n=3: 1 4 14 25 28 25 14 4 1
n=4: 1 8 64 258 986 2870 6134 11586 18830 23832 25078 23832 18830 11586 6134
...
PROG
(SageMath) # uses[betti_numbers, LieAlgebraFromGraph from A360571]
def A360936_row(n):
if n == 1: return [1, 1]
return betti_numbers(LieAlgebraFromGraph(graphs.CubeGraph(n-1)))
CROSSREFS
Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph).
KEYWORD
nonn,tabf,more
AUTHOR
Samuel J. Bevins, Feb 28 2023
STATUS
approved
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.
+10
0
1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
OFFSET
2,2
LINKS
Marco Aldi and Samuel Bevins, 2-step Nilpotent L_oo-algebras and Hypergraphs, arXiv:2212.13608 [math.CO], 2023. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
SageMath Graph Theory, Various families of graphs, see FibonacciTree().
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=2: 1 2 2 1
n=3: 1 4 11 16 16 11 4 1
n=4: 1 7 33 95 212 344 444 444 344 212 95 33 7 1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
PROG
(SageMath)
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
def BettiNumbers(graph):
D = {}
for edge in graph.edges():
e = "x" + str(edge[0])
f = "x" + str(edge[1])
D[(e, f)] = {e + f : 1}
C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
Stratified().Nilpotent())
L = LieAlgebra(QQ, D, nilpotent=True, category=C)
H = L.cohomology()
d = L.dimension() + 1
return [H[n].dimension() for n in range(d)]
# Example usage:
n = 5
X = BettiNumbers(graphs.FibonacciTree(n))
CROSSREFS
Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).
KEYWORD
nonn,tabf
AUTHOR
Samuel J. Bevins, Jan 11 2024
STATUS
approved

Search completed in 0.013 seconds