[go: up one dir, main page]

login
Search: a355353 -id:a355353
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
+10
21
1, 1, 1, 4, 7, 20, 43, 110, 262, 674, 1684, 4397, 11320, 29938, 78641, 210044, 559724, 1507563, 4060585, 11016027, 29919220, 81673846, 223307300, 612851316, 1684816018, 4645243490, 12829177587, 35513736868, 98465916370, 273531234027, 760966444416
OFFSET
0,4
COMMENTS
a(n) = Sum_{k=0..floor(n/2)} A355350(n-k,n-2*k) for n >= 0.
a(n) = A359720(n,0), for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) x*P(x^2) = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
From Vaclav Kotesovec, Feb 01 2024: (Start)
Formula (2) can be rewritten as the functional equation x/QPochhammer(x^2) = QPochhammer(y, x^2)/(1 - y) * QPochhammer(1/(x^2*y), x^2)/(1 - 1/(x^2*y)).
a(n) ~ c * d^n / n^(3/2), where d = 2.92005174190265697439941308343193651904071627244119127019370275824199... and c = 1.4709989760845501303394202030872391136773745007487301056274536584990... (End)
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 20*x^5 + 43*x^6 + 110*x^7 + 262*x^8 + 674*x^9 + 1684*x^10 + 4397*x^11 + 11320*x^12 + ...
where
x = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 -+ ...
also,
x*P(x^2) = (1 - x^2*A(x))*(1 - 1/A(x)) * (1 - x^4*A(x))*(1 - x^2/A(x)) * (1 - x^6*A(x))*(1 - x^4/A(x)) * (1 - x^8*A(x))*(1 - x^6/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[-Log[r] * ((-1 + r) * QPochhammer[1/r, r^2] * (-2*Log[r] + (-1 + r)*(Log[1 - r^2] - Log[r - r^3]) + (-1 + r) * QPolyGamma[0, -1/2, r^2] - (-1 + r)*QPolyGamma[0, 1, r^2]) + 4*(-1 + r)^2 * r^2 * Log[r] * Derivative[0, 1][QPochhammer][1/r, r^2] + 2*r^3 * Log[r] * QPochhammer[1/r, r^2]^3 * Derivative[0, 1][QPochhammer][r^2, r^2]) / (Pi*r^2* QPochhammer[1/r, r^2] * (-4*r*Log[r]^2 + (-1 + r)^2 * QPolyGamma[1, -1/2, r^2]))]} /. FindRoot[ 1/QPochhammer[r^2] == (r*QPochhammer[1/r, r^2]^2)/(-1 + r)^2, {r, 1/3}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
PROG
(PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(n+4));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
+10
11
1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
OFFSET
0,5
COMMENTS
The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
Conjectures:
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
(C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
PROG
(PARI) {T(n, k) = my(A=[1, y], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); polcoeff(A[n+1], k, y)}
for(n=0, 12, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A355351 (row sums), A355352, A355353, A355354, A355355.
Cf. A355356, A355357, A354658 (central terms).
Cf. A354645, A354650 (related table), A000041, A000716, A023005.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 1, 4, 16, 60, 231, 920, 3819, 16365, 71792, 320219, 1446517, 6602975, 30415725, 141231704, 660431602, 3107519738, 14701758926, 69891556656, 333700223891, 1599475107712, 7693580712200, 37125486197570, 179675330190428, 871910824853956, 4241603521253775
OFFSET
0,3
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
From Vaclav Kotesovec, Feb 01 2024: (Start)
Formula (2) can be rewritten as the functional equation x/QPochhammer(x) = QPochhammer(y, x)/(1 - y) * QPochhammer(1/(x*y), x)/(1 - 1/(x*y)).
a(n) ~ c * d^n / n^(3/2), where d = 5.163920888936085556632234304058129... and c = 0.824708825453794494929019119272... (End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 60*x^4 + 231*x^5 + 920*x^6 + 3819*x^7 + 16365*x^8 + 71792*x^9 + 320219*x^10 + 1446517*x^11 + ...
where
x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, s*Sqrt[(-1 + s)*(-1 + r*s) * Log[r]* ((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r] - r*(-1 + s)*(-1 + r*s)*Log[r]* Derivative[0, 1][QPochhammer][r, r] / QPochhammer[r] + r*s*Log[r] * QPochhammer[r] * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + (-1 + r*s) * ((1 - s) * QPolyGamma[0, Log[s]/Log[r], r] + Log[r] * (-1 - (r*(-1 + s) * Derivative[0, 1][QPochhammer][s, r]) / QPochhammer[s, r]))) / (-s*(1 + r - 4*r*s + r*(1 + r)*s^2) * Log[r]^2 + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, -Log[r*s]/Log[r], r]) / (2*Pi)]} /. FindRoot[{1/QPochhammer[r] + s*QPochhammer[1/(r*s), r] * QPochhammer[s, r] / ((-1 + s) * (-1 + r*s)) == 0, (-1 + r*s^2)*Log[r] + (-1 + s) * (-1 + r*s) * (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s] / Log[r], r]) == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
PROG
(PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 2, 10, 50, 248, 1294, 7092, 40426, 236698, 1412860, 8561906, 52546920, 326011118, 2041512624, 12886608654, 81908498582, 523780469070, 3367399778356, 21752611767804, 141118852010146, 919035717462824, 6006146649948722, 39376700396145616, 258907024677687808
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 2^k for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 2*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 248*x^4 + 1294*x^5 + 7092*x^6 + 40426*x^7 + 236698*x^8 + 1412860*x^9 + 8561906*x^10 + ...
where
2*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
2*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 2], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x) satisfies: 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 4, 28, 196, 1416, 10860, 87392, 727188, 6196212, 53783336, 474011756, 4231158016, 38174676188, 347566170384, 3189295781780, 29465038957708, 273851282010308, 2558703740102840, 24019990008557160, 226444571054525156, 2142925363606256584, 20349477565111498148
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 4^k for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 4*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 28*x^2 + 196*x^3 + 1416*x^4 + 10860*x^5 + 87392*x^6 + 727188*x^7 + 6196212*x^8 + 53783336*x^9 + 474011756*x^10 + ...
where
4*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
4*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 4], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x) satisfies: 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 5, 40, 320, 2660, 23455, 216540, 2064055, 20137945, 200134600, 2019406895, 20635313325, 213109960895, 2220820915065, 23323755734820, 246616999661690, 2623193780773530, 28049464032800110, 301340494687086960, 3251017466141039095, 35207152686408604400
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 5^k for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 5*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 40*x^2 + 320*x^3 + 2660*x^4 + 23455*x^5 + 216540*x^6 + 2064055*x^7 + 20137945*x^8 + 200134600*x^9 + 2019406895*x^10 + ...
where
5*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
5*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 5], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x) satisfies: x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
8
1, 0, 1, 3, 10, 28, 79, 216, 603, 1702, 4933, 14620, 44287, 136352, 424858, 1334162, 4211572, 13344072, 42412667, 135217722, 432483522, 1387929369, 4469341807, 14439523193, 46795072968, 152076428228, 495460089510, 1617787324674, 5292984017236, 17348743335252
OFFSET
0,4
COMMENTS
a(n) = Sum_{k=0..floor(n/2)} A355350(n-k,k) for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x^2*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + x^2 + 3*x^3 + 10*x^4 + 28*x^5 + 79*x^6 + 216*x^7 + 603*x^8 + 1702*x^9 + 4933*x^10 + 14620*x^11 + 44287*x^12 + ...
where
x^2 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x^2*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 0, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = polcoeff( x^2 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved
G.f. A(x,y) = Sum_{n>=0} x^n/(1-y)^(2*n+1) * Sum_{k=0..3*n} T(n,k)*y^k satisfies: y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
+10
3
1, 0, 3, -3, 1, 0, 9, -18, 21, -15, 6, -1, 0, 22, -56, 116, -182, 196, -140, 64, -17, 2, 0, 51, -144, 496, -1329, 2436, -3148, 2934, -1971, 934, -297, 57, -5, 0, 108, -270, 1680, -7005, 18846, -36302, 52462, -57914, 49060, -31724, 15412, -5455, 1330, -200, 14, 0, 221, -381, 5647, -32760, 116068, -298976, 591690, -920249, 1138052, -1125135, 889253, -558740, 275744, -104672, 29524, -5833, 721, -42
OFFSET
0,3
COMMENTS
Row sums equal A000108, the Catalan numbers:
Sum_{k=0..3*n} T(n,k) = A000108(n) for n >= 0.
T(n,3*n) = (-1)^(n-1) * A000108(n-1) for n >= 1 (Catalan numbers).
Conjecture: T(n,1) = A000716(n) for n >= 1 (number of partitions of n into parts of 3 kinds).
The generating functions of some related sequences are given as follows.
(1) A(x,x) = Sum_{n>=0} A355351(n)*x^n.
(2) A(x,2*x) = Sum_{n>=0} A355352(n)*x^n.
(3) A(x,3*x) = Sum_{n>=0} A355353(n)*x^n.
(4) A(x,4*x) = Sum_{n>=0} A355354(n)*x^n.
(5) A(x,5*x) = Sum_{n>=0} A355355(n)*x^n.
(6) A(x,x^2) = Sum_{n>=0} A355356(n)*x^n.
(7) A(x^2,x) = Sum_{n>=0} A355357(n)*x^n.
(8) A(x,x*y) = Sum_{n>=0} x^n * Sum_{k=0..n} A355350(n,k) * y^k.
(9) 1/A(4*x,-1) = 2*Sum_{n>=0} A268300(n)*x^n.
(10) A(x,2) = -Sum_{n>=0} A355871(n)*x^n.
SPECIFIC VALUES.
(V.1) A(x,y) = -exp(-Pi) at x = exp(-2*Pi) and y = exp(Pi) * Pi^(1/4)/gamma(3/4).
(V.2) A(x,y) = -exp(-2*Pi) at x = exp(-4*Pi) and y = exp(2*Pi) * Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(V.3) A(x,y) = -exp(-3*Pi) at x = exp(-6*Pi) and y = exp(3*Pi) * Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(V.4) A(x,y) = -exp(-4*Pi) at x = exp(-8*Pi) and y = exp(4*Pi) * Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(V.5) A(x,y) = -exp(-sqrt(3)*Pi) at x = exp(-2*sqrt(3)*Pi) and y = exp(sqrt(3)*Pi) * gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).
LINKS
FORMULA
G.f. A(x,y) = Sum_{n>=0} x^n/(1-y)^(2*n+1) * Sum_{k=0..3*n} T(n,k)*y^k satisfies:
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) y = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)) * (1 - x^n), by the Jacobi triple product identity.
EXAMPLE
G.f.: A(x,y) = 1/(1-y) + x*(y^3 - 3*y^2 + 3*y)/(1-y)^3 + x^2*(-y^6 + 6*y^5 - 15*y^4 + 21*y^3 - 18*y^2 + 9*y)/(1-y)^5 + x^3*(2*y^9 - 17*y^8 + 64*y^7 - 140*y^6 + 196*y^5 - 182*y^4 + 116*y^3 - 56*y^2 + 22*y)/(1-y)^7 + x^4*(-5*y^12 + 57*y^11 - 297*y^10 + 934*y^9 - 1971*y^8 + 2934*y^7 - 3148*y^6 + 2436*y^5 - 1329*y^4 + 496*y^3 - 144*y^2 + 51*y)/(1-y)^9 + x^5*(14*y^15 - 200*y^14 + 1330*y^13 - 5455*y^12 + 15412*y^11 - 31724*y^10 + 49060*y^9 - 57914*y^8 + 52462*y^7 - 36302*y^6 + 18846*y^5 - 7005*y^4 + 1680*y^3 - 270*y^2 + 108*y)/(1-y)^11 + ...
where
y = ... + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also,
y = (1 - x*A(x,y))*(1 - 1/A(x,y))*(1-x) * (1 - x^2*A(x,y))*(1 - x/A(x,y))*(1-x^2) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y))*(1-x^3) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y))*(1-x^4) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y))*(1-x^n) * ...
This triangle of coefficients T(n,k) of x^n*y^k/(1-y)^(2*n+1) in A(x,y), for k = 0..3*n in row n, begins
n = 0: [1];
n = 1: [0, 3, -3, 1];
n = 2: [0, 9, -18, 21, -15, 6, -1];
n = 3: [0, 22, -56, 116, -182, 196, -140, 64, -17, 2];
n = 4: [0, 51, -144, 496, -1329, 2436, -3148, 2934, -1971, 934, -297, 57, -5];
n = 5: [0, 108, -270, 1680, -7005, 18846, -36302, 52462, -57914, 49060, -31724, 15412, -5455, 1330, -200, 14];
n = 6: [0, 221, -381, 5647, -32760, 116068, -298976, 591690, -920249, 1138052, -1125135, 889253, -558740, 275744, -104672, 29524, -5833, 721, -42];
n = 7: [0, 429, -63, 18281, -134985, 594399, -1941037, 4947447, -10062669, 16571700, -22316250, 24716922, -22564425, 16956135, -10435305, 5210319, -2078910, 647565, -151825, 25215, -2646, 132]; ...
The rightmost border equals the signed Catalan numbers (A000108) shifted right one place.
Column 1 appears to equal A000716 (ignoring the initial term).
Example: at y = x, we have the g.f. of A355351:
A(x,x) = 1/(1-x) + x*(3*x - 3*x^2 + x^3)/(1-x)^3 + x^2*(9*x - 18*x^2 + 21*x^3 - 15*x^4 + 6*x^5 - x^6)/(1-x)^5 + x^3*(22*x - 56*x^2 + 116*x^3 - 182*x^4 + 196*x^5 - 140*x^6 + 64*x^7 - 17*x^8 + 2*x^9)/(1-x)^7 + ... = 1 + x + 4*x^2 + 16*x^3 + 60*x^4 + 231*x^5 + 920*x^6 + 3819*x^7 + ... + A355351(n)*x^n + ...
where x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,x)^n.
PROG
(PARI) {T(n, k) = my(A=[1/(1-y)], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( (y - sum(m=-t, t, (-1)^m * x^(m*(m+1)/2) * Ser(A)^m )), #A-1, x)/(1-y)^2); polcoeff(A[n+1]*(1-y)^(2*n+1), k, y)}
for(n=0, 12, for(k=0, 3*n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A000108 (row sums), A355871 (y=2).
Cf. A355350 (related triangle), A355351 (y=x), A355352 (y=2*x), A355353 (y=3*x), A355354 (y=4*x), A355355 (y=5*x), A355356 (y=x^2), A355357 (x=x^2,y=x).
Cf. A355360 (related triangle), A000716.
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Jul 19 2022
STATUS
approved

Search completed in 0.017 seconds