Displaying 1-8 of 8 results found.
page
1
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
+10
21
1, 1, 1, 4, 7, 20, 43, 110, 262, 674, 1684, 4397, 11320, 29938, 78641, 210044, 559724, 1507563, 4060585, 11016027, 29919220, 81673846, 223307300, 612851316, 1684816018, 4645243490, 12829177587, 35513736868, 98465916370, 273531234027, 760966444416
COMMENTS
a(n) = Sum_{k=0..floor(n/2)} A355350(n-k,n-2*k) for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) x*P(x^2) = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
Formula (2) can be rewritten as the functional equation x/QPochhammer(x^2) = QPochhammer(y, x^2)/(1 - y) * QPochhammer(1/(x^2*y), x^2)/(1 - 1/(x^2*y)).
a(n) ~ c * d^n / n^(3/2), where d = 2.92005174190265697439941308343193651904071627244119127019370275824199... and c = 1.4709989760845501303394202030872391136773745007487301056274536584990... (End)
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 20*x^5 + 43*x^6 + 110*x^7 + 262*x^8 + 674*x^9 + 1684*x^10 + 4397*x^11 + 11320*x^12 + ...
where
x = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 -+ ...
also,
x*P(x^2) = (1 - x^2*A(x))*(1 - 1/A(x)) * (1 - x^4*A(x))*(1 - x^2/A(x)) * (1 - x^6*A(x))*(1 - x^4/A(x)) * (1 - x^8*A(x))*(1 - x^6/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[-Log[r] * ((-1 + r) * QPochhammer[1/r, r^2] * (-2*Log[r] + (-1 + r)*(Log[1 - r^2] - Log[r - r^3]) + (-1 + r) * QPolyGamma[0, -1/2, r^2] - (-1 + r)*QPolyGamma[0, 1, r^2]) + 4*(-1 + r)^2 * r^2 * Log[r] * Derivative[0, 1][QPochhammer][1/r, r^2] + 2*r^3 * Log[r] * QPochhammer[1/r, r^2]^3 * Derivative[0, 1][QPochhammer][r^2, r^2]) / (Pi*r^2* QPochhammer[1/r, r^2] * (-4*r*Log[r]^2 + (-1 + r)^2 * QPolyGamma[1, -1/2, r^2]))]} /. FindRoot[ 1/QPochhammer[r^2] == (r*QPochhammer[1/r, r^2]^2)/(-1 + r)^2, {r, 1/3}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
PROG
(PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(n+4));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
+10
11
1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
COMMENTS
The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
Conjectures:
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
(C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.
FORMULA
G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function ( A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
PROG
(PARI) {T(n, k) = my(A=[1, y], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); polcoeff(A[n+1], k, y)}
for(n=0, 12, for(k=0, n, print1( T(n, k), ", ")); print(""))
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 1, 4, 16, 60, 231, 920, 3819, 16365, 71792, 320219, 1446517, 6602975, 30415725, 141231704, 660431602, 3107519738, 14701758926, 69891556656, 333700223891, 1599475107712, 7693580712200, 37125486197570, 179675330190428, 871910824853956, 4241603521253775
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
Formula (2) can be rewritten as the functional equation x/QPochhammer(x) = QPochhammer(y, x)/(1 - y) * QPochhammer(1/(x*y), x)/(1 - 1/(x*y)).
a(n) ~ c * d^n / n^(3/2), where d = 5.163920888936085556632234304058129... and c = 0.824708825453794494929019119272... (End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 60*x^4 + 231*x^5 + 920*x^6 + 3819*x^7 + 16365*x^8 + 71792*x^9 + 320219*x^10 + 1446517*x^11 + ...
where
x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, s*Sqrt[(-1 + s)*(-1 + r*s) * Log[r]* ((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r] - r*(-1 + s)*(-1 + r*s)*Log[r]* Derivative[0, 1][QPochhammer][r, r] / QPochhammer[r] + r*s*Log[r] * QPochhammer[r] * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + (-1 + r*s) * ((1 - s) * QPolyGamma[0, Log[s]/Log[r], r] + Log[r] * (-1 - (r*(-1 + s) * Derivative[0, 1][QPochhammer][s, r]) / QPochhammer[s, r]))) / (-s*(1 + r - 4*r*s + r*(1 + r)*s^2) * Log[r]^2 + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, -Log[r*s]/Log[r], r]) / (2*Pi)]} /. FindRoot[{1/QPochhammer[r] + s*QPochhammer[1/(r*s), r] * QPochhammer[s, r] / ((-1 + s) * (-1 + r*s)) == 0, (-1 + r*s^2)*Log[r] + (-1 + s) * (-1 + r*s) * (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s] / Log[r], r]) == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
PROG
(PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 2, 10, 50, 248, 1294, 7092, 40426, 236698, 1412860, 8561906, 52546920, 326011118, 2041512624, 12886608654, 81908498582, 523780469070, 3367399778356, 21752611767804, 141118852010146, 919035717462824, 6006146649948722, 39376700396145616, 258907024677687808
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 2^k for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 2*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 248*x^4 + 1294*x^5 + 7092*x^6 + 40426*x^7 + 236698*x^8 + 1412860*x^9 + 8561906*x^10 + ...
where
2*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
2*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 2], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x) satisfies: 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 4, 28, 196, 1416, 10860, 87392, 727188, 6196212, 53783336, 474011756, 4231158016, 38174676188, 347566170384, 3189295781780, 29465038957708, 273851282010308, 2558703740102840, 24019990008557160, 226444571054525156, 2142925363606256584, 20349477565111498148
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 4^k for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 4*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 28*x^2 + 196*x^3 + 1416*x^4 + 10860*x^5 + 87392*x^6 + 727188*x^7 + 6196212*x^8 + 53783336*x^9 + 474011756*x^10 + ...
where
4*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
4*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 4], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x) satisfies: 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
9
1, 5, 40, 320, 2660, 23455, 216540, 2064055, 20137945, 200134600, 2019406895, 20635313325, 213109960895, 2220820915065, 23323755734820, 246616999661690, 2623193780773530, 28049464032800110, 301340494687086960, 3251017466141039095, 35207152686408604400
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 5^k for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 5*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 40*x^2 + 320*x^3 + 2660*x^4 + 23455*x^5 + 216540*x^6 + 2064055*x^7 + 20137945*x^8 + 200134600*x^9 + 2019406895*x^10 + ...
where
5*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
5*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 5], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x) satisfies: x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
+10
8
1, 0, 1, 3, 10, 28, 79, 216, 603, 1702, 4933, 14620, 44287, 136352, 424858, 1334162, 4211572, 13344072, 42412667, 135217722, 432483522, 1387929369, 4469341807, 14439523193, 46795072968, 152076428228, 495460089510, 1617787324674, 5292984017236, 17348743335252
COMMENTS
a(n) = Sum_{k=0..floor(n/2)} A355350(n-k,k) for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1) x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x^2*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function ( A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + x^2 + 3*x^3 + 10*x^4 + 28*x^5 + 79*x^6 + 216*x^7 + 603*x^8 + 1702*x^9 + 4933*x^10 + 14620*x^11 + 44287*x^12 + ...
where
x^2 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x^2*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 0, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = polcoeff( x^2 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
G.f. A(x,y) = Sum_{n>=0} x^n/(1-y)^(2*n+1) * Sum_{k=0..3*n} T(n,k)*y^k satisfies: y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
+10
3
1, 0, 3, -3, 1, 0, 9, -18, 21, -15, 6, -1, 0, 22, -56, 116, -182, 196, -140, 64, -17, 2, 0, 51, -144, 496, -1329, 2436, -3148, 2934, -1971, 934, -297, 57, -5, 0, 108, -270, 1680, -7005, 18846, -36302, 52462, -57914, 49060, -31724, 15412, -5455, 1330, -200, 14, 0, 221, -381, 5647, -32760, 116068, -298976, 591690, -920249, 1138052, -1125135, 889253, -558740, 275744, -104672, 29524, -5833, 721, -42
COMMENTS
Row sums equal A000108, the Catalan numbers:
Sum_{k=0..3*n} T(n,k) = A000108(n) for n >= 0.
T(n,3*n) = (-1)^(n-1) * A000108(n-1) for n >= 1 (Catalan numbers).
Conjecture: T(n,1) = A000716(n) for n >= 1 (number of partitions of n into parts of 3 kinds).
The generating functions of some related sequences are given as follows.
(1) A(x,x) = Sum_{n>=0} A355351(n)*x^n.
(2) A(x,2*x) = Sum_{n>=0} A355352(n)*x^n.
(3) A(x,3*x) = Sum_{n>=0} A355353(n)*x^n.
(4) A(x,4*x) = Sum_{n>=0} A355354(n)*x^n.
(5) A(x,5*x) = Sum_{n>=0} A355355(n)*x^n.
(6) A(x,x^2) = Sum_{n>=0} A355356(n)*x^n.
(7) A(x^2,x) = Sum_{n>=0} A355357(n)*x^n.
(8) A(x,x*y) = Sum_{n>=0} x^n * Sum_{k=0..n} A355350(n,k) * y^k.
(9) 1/A(4*x,-1) = 2*Sum_{n>=0} A268300(n)*x^n.
(10) A(x,2) = -Sum_{n>=0} A355871(n)*x^n.
SPECIFIC VALUES.
(V.1) A(x,y) = -exp(-Pi) at x = exp(-2*Pi) and y = exp(Pi) * Pi^(1/4)/gamma(3/4).
(V.2) A(x,y) = -exp(-2*Pi) at x = exp(-4*Pi) and y = exp(2*Pi) * Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(V.3) A(x,y) = -exp(-3*Pi) at x = exp(-6*Pi) and y = exp(3*Pi) * Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(V.4) A(x,y) = -exp(-4*Pi) at x = exp(-8*Pi) and y = exp(4*Pi) * Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(V.5) A(x,y) = -exp(-sqrt(3)*Pi) at x = exp(-2*sqrt(3)*Pi) and y = exp(sqrt(3)*Pi) * gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).
FORMULA
G.f. A(x,y) = Sum_{n>=0} x^n/(1-y)^(2*n+1) * Sum_{k=0..3*n} T(n,k)*y^k satisfies:
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) y = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)) * (1 - x^n), by the Jacobi triple product identity.
EXAMPLE
G.f.: A(x,y) = 1/(1-y) + x*(y^3 - 3*y^2 + 3*y)/(1-y)^3 + x^2*(-y^6 + 6*y^5 - 15*y^4 + 21*y^3 - 18*y^2 + 9*y)/(1-y)^5 + x^3*(2*y^9 - 17*y^8 + 64*y^7 - 140*y^6 + 196*y^5 - 182*y^4 + 116*y^3 - 56*y^2 + 22*y)/(1-y)^7 + x^4*(-5*y^12 + 57*y^11 - 297*y^10 + 934*y^9 - 1971*y^8 + 2934*y^7 - 3148*y^6 + 2436*y^5 - 1329*y^4 + 496*y^3 - 144*y^2 + 51*y)/(1-y)^9 + x^5*(14*y^15 - 200*y^14 + 1330*y^13 - 5455*y^12 + 15412*y^11 - 31724*y^10 + 49060*y^9 - 57914*y^8 + 52462*y^7 - 36302*y^6 + 18846*y^5 - 7005*y^4 + 1680*y^3 - 270*y^2 + 108*y)/(1-y)^11 + ...
where
y = ... + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also,
y = (1 - x*A(x,y))*(1 - 1/A(x,y))*(1-x) * (1 - x^2*A(x,y))*(1 - x/A(x,y))*(1-x^2) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y))*(1-x^3) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y))*(1-x^4) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y))*(1-x^n) * ...
This triangle of coefficients T(n,k) of x^n*y^k/(1-y)^(2*n+1) in A(x,y), for k = 0..3*n in row n, begins
n = 0: [1];
n = 1: [0, 3, -3, 1];
n = 2: [0, 9, -18, 21, -15, 6, -1];
n = 3: [0, 22, -56, 116, -182, 196, -140, 64, -17, 2];
n = 4: [0, 51, -144, 496, -1329, 2436, -3148, 2934, -1971, 934, -297, 57, -5];
n = 5: [0, 108, -270, 1680, -7005, 18846, -36302, 52462, -57914, 49060, -31724, 15412, -5455, 1330, -200, 14];
n = 6: [0, 221, -381, 5647, -32760, 116068, -298976, 591690, -920249, 1138052, -1125135, 889253, -558740, 275744, -104672, 29524, -5833, 721, -42];
n = 7: [0, 429, -63, 18281, -134985, 594399, -1941037, 4947447, -10062669, 16571700, -22316250, 24716922, -22564425, 16956135, -10435305, 5210319, -2078910, 647565, -151825, 25215, -2646, 132]; ...
The rightmost border equals the signed Catalan numbers ( A000108) shifted right one place.
Column 1 appears to equal A000716 (ignoring the initial term).
Example: at y = x, we have the g.f. of A355351:
A(x,x) = 1/(1-x) + x*(3*x - 3*x^2 + x^3)/(1-x)^3 + x^2*(9*x - 18*x^2 + 21*x^3 - 15*x^4 + 6*x^5 - x^6)/(1-x)^5 + x^3*(22*x - 56*x^2 + 116*x^3 - 182*x^4 + 196*x^5 - 140*x^6 + 64*x^7 - 17*x^8 + 2*x^9)/(1-x)^7 + ... = 1 + x + 4*x^2 + 16*x^3 + 60*x^4 + 231*x^5 + 920*x^6 + 3819*x^7 + ... + A355351(n)*x^n + ...
where x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,x)^n.
PROG
(PARI) {T(n, k) = my(A=[1/(1-y)], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( (y - sum(m=-t, t, (-1)^m * x^(m*(m+1)/2) * Ser(A)^m )), #A-1, x)/(1-y)^2); polcoeff(A[n+1]*(1-y)^(2*n+1), k, y)}
for(n=0, 12, for(k=0, 3*n, print1( T(n, k), ", ")); print(""))
Search completed in 0.017 seconds
|