[go: up one dir, main page]

login
Search: a352970 -id:a352970
     Sort: relevance | references | number | modified | created      Format: long | short | data
Carmichael numbers ending in 1.
+10
5
561, 2821, 6601, 8911, 15841, 29341, 41041, 75361, 101101, 115921, 162401, 172081, 188461, 252601, 314821, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 656601, 658801, 838201, 852841, 1024651, 1152271, 1193221, 1461241, 1615681, 1857241, 1909001, 2100901, 2113921, 2433601, 2455921, 2704801, 3057601
OFFSET
1,1
MATHEMATICA
Select[10*Range[0, 3*10^5] + 1, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 08 2022 *)
PROG
(Python)
from itertools import islice
from sympy import nextprime, factorint
def A354609_gen(): # generator of terms
p, q = 3, 5
while True:
for n in range(p+2+(-p-1)%10, q, 10):
f = factorint(n)
if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
yield n
p, q = q, nextprime(q)
A354609_list = list(islice(A354609_gen(), 30)) # Chai Wah Wu, Jul 24 2022
CROSSREFS
Intersection of A002997 and A017281.
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Jul 08 2022
STATUS
approved
Carmichael numbers ending in 5.
+10
5
1105, 2465, 10585, 62745, 278545, 449065, 825265, 1050985, 2531845, 3224065, 3664585, 5632705, 6054985, 9582145, 11119105, 12945745, 13187665, 13992265, 15403285, 21584305, 22665505, 28787185, 31692805, 36121345, 37354465, 39353665, 40280065, 41298985, 47006785, 60112885, 67371265, 74165065, 84417985
OFFSET
1,1
MATHEMATICA
Select[10*Range[0, 10^7] + 5, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 07 2022 *)
PROG
(PARI) Korselt(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
isok(n) = ((n%10)==5) && !isprime(n) && Korselt(n) && n>1; \\ Michel Marcus, Jul 07 2022; after A002997
(Python)
from itertools import islice
from sympy import factorint, nextprime
def A355305_gen(): # generator of terms
p, q = 3, 5
while True:
for n in range(p+2+(-p+3)%10, q, 10):
f = factorint(n)
if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
yield n
p, q = q, nextprime(q)
A355305_list = list(islice(A355305_gen(), 10)) # Chai Wah Wu, Jul 24 2022
CROSSREFS
Intersection of A002997 and A017329.
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Jul 03 2022
STATUS
approved
Carmichael numbers ending in 7.
+10
5
46657, 126217, 748657, 1569457, 4909177, 9613297, 11972017, 40160737, 55462177, 65037817, 106041937, 161035057, 178451857, 193910977, 196358977, 311388337, 328573477, 338740417, 358940737, 403043257, 461502097, 499310197, 556450777, 569332177, 633639097, 784966297, 902645857, 981789337, 1125038377
OFFSET
1,1
MATHEMATICA
Select[10*Range[0, 10^7] + 7, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 24 2022 *)
PROG
(Python)
from itertools import count, islice
from sympy import factorint
def A355307_gen(): # generator of terms
for n in count(7, 10):
f = factorint(n)
if len(f) == sum(f.values()) > 1 and not any((n-1) % (p-1) for p in f):
yield n
A355307_list = list(islice(A355307_gen(), 5)) # Chai Wah Wu, Jul 25 2022
CROSSREFS
Intersection of A002997 and A017353.
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Jul 24 2022
STATUS
approved
Carmichael numbers ending in 3.
+10
5
52633, 63973, 334153, 670033, 997633, 2508013, 2628073, 5968873, 6733693, 13696033, 15829633, 15888313, 18900973, 26280073, 27336673, 46483633, 53711113, 65241793, 67653433, 75765313, 124630273, 133344793, 158864833, 182356993, 227752993, 242641153, 292244833, 426821473, 577240273, 580565233, 600892993
OFFSET
1,1
MATHEMATICA
Select[10*Range[0, 10^7] + 3, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 25 2022 *)
PROG
(Python)
from itertools import count, islice
from sympy import factorint
def A355309_gen(): # generator of terms
for n in count(3, 10):
f = factorint(n)
if len(f) == sum(f.values()) > 1 and not any((n-1) % (p-1) for p in f):
yield n
A355309_list = list(islice(A355309_gen(), 5)) # Chai Wah Wu, Jul 26 2022
CROSSREFS
Intersection of A002997 and A017305.
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Jul 25 2022
STATUS
approved

Search completed in 0.008 seconds