OFFSET
0,8
FORMULA
E.g.f. of column k: 1/(1 + k*x*exp(x)).
T(0,k) = 1 and T(n,k) = -k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, 0, 4, 12, 24, 40, ...
0, 3, -6, -63, -204, -465, ...
0, -4, -8, 420, 2288, 7180, ...
0, -25, 150, -3435, -32020, -138525, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n, (-k)^(n-j)*(n-j)^j/j!);
(PARI) T(n, k) = if(n==0, 1, -k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Feb 19 2022
STATUS
approved