[go: up one dir, main page]

login
Search: a348797 -id:a348797
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of combinatorially non-equivalent "triangulations" of a compact genus n surface which have only 1 vertex (all vertices of the triangles are identified). Also the number of combinatorially distinct identifications of pairs of edges of a polygon P having 12g-6 sides leading to a compact oriented genus g surface containing the boundary of P as a 3-regular graph.
+10
4
1, 9, 1726, 1349005, 2169056374, 5849686966988, 23808202021448662, 136415042681045401661, 1047212810636411989605202, 10378926166167927379808819918, 129040245485216017874985276329588
OFFSET
0,2
COMMENTS
In the Krasko paper p. 18, Table 2, this sequence is designated "tautilde^(3)_(+)(g)" and has offset 1. - Michael De Vlieger, Oct 31 2021
a(n-1) is the number of extremal Riemann surfaces of genus n, in the sense of having extremal injectivity radius; see the paper of Girondo and González-Diez. - Harry Richman, Jun 07 2024
LINKS
Roland Bacher and Alina Vdovina, Counting 1-vertex triangulations of oriented surfaces, arXiv:math/0110025 [math.CO], 2001.
Roland Bacher and Alina Vdovina, Counting 1-vertex triangulations of oriented surfaces, Discrete Math. 246 (2002), 13-27.
E. Girondo and G. González-Diez, Genus two extremal surfaces: Extremal discs, isometries and Weierstrass points, Isr. J. Math., 132 (2002), 221-238.
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of 3-regular one-face maps on orientable or non-orientable surface up to all symmetries, arXiv:1901.06591 [math.CO], 2019.
FORMULA
Bacher & Vdovina reference gives a formula. Another formula can be derived by use of characters of the symmetric groups.
EXAMPLE
The first term, 1, is associated to the usual construction of the torus: identify opposite sides of a square. The 1-vertex triangulation is obtained by subdividing the square into 2 triangles along a diagonal. Another point of view is to identify opposite sides of a hexagon (thus getting a torus). The 1-vertex triangulation is the dual of the boundary of the hexagon (which is a graph having 2 nodes and a triple edge between them) drawn on the torus.
CROSSREFS
KEYWORD
nonn
AUTHOR
Roland Bacher, Mar 23 2002
STATUS
approved
a(n) = number of 3-regular one-face rooted maps on orientable surfaces.
+10
4
1, 105, 50050, 56581525, 117123756750, 386078943500250, 1857039718236202500, 12277353837189093778125, 106815706684397824557193750, 1183197582943074702620035168750
OFFSET
1,2
COMMENTS
In the paper p. 18, Table 2, this sequence is designated "tau^(3)_(+)(g)".
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of 3-regular one-face maps on orientable or non-orientable surface up to all symmetries, arXiv:1901.06591 [math.CO], 2019.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Oct 31 2021
STATUS
approved
Numbers of 3-regular one-face unsensed maps on orientable surfaces.
+10
4
1, 8, 927, 676445, 1084610107, 2924847922929, 11904101304325611, 68207521363461659373, 523606405320272947813801, 5189463083084174721816125584
OFFSET
1,2
COMMENTS
In the paper p. 18, Table 2, this sequence is designated "taubar^(3)_(+)(g)".
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of 3-regular one-face maps on orientable or non-orientable surface up to all symmetries, arXiv:1901.06591 [math.CO], 2019.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Oct 31 2021
STATUS
approved
Numbers of 3-regular one-face rooted maps on non-orientable surfaces.
+10
4
6, 128, 3780, 163840, 8828820, 587202560, 45821335560, 4133906022400, 421946699674500, 48151737348915200, 6070544859205827000, 838225443769915801600, 125787689149526729325000, 20385642792484352294912000, 3548258423062128985899690000, 660168656191813264718430208000, 130746565669943973430227429382500, 27463016097579431812286696652800000, 6098023559259606741021710317037175000
OFFSET
2,1
COMMENTS
In the paper p. 18, Table 3, this sequence is designated "tau^(3)_(-)(g)".
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of 3-regular one-face maps on orientable or non-orientable surface up to all symmetries, arXiv:1901.06591 [math.CO], 2019.
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Oct 31 2021
STATUS
approved

Search completed in 0.008 seconds