[go: up one dir, main page]

login
Search: a347261 -id:a347261
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that sigma(3*k) = 8*k.
+10
1
28, 90, 496, 546, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176
OFFSET
1,1
COMMENTS
Every perfect number P greater than 6 (so, P is not divisible by 3) will be found in this sequence. Proof: sigma(3*P) = sigma(3)*sigma(P) = 4*(2*P) = 8*P. - Timothy L. Tiffin, Aug 26 2021
Solutions are integers y/3 where sigma(y)/y = 8/3. - Michel Marcus, Aug 27 2021
EXAMPLE
546 is a term, since sigma(3*546) = sigma(1638) = 4368 = 8*546. - Timothy L. Tiffin, Aug 26 2021
MATHEMATICA
Select[Range[5*10^9], DivisorSigma[1, 3*#] == 8*# &] (* Timothy L. Tiffin, Aug 26 2021 *)
Do[If[DivisorSigma[1, 3*k] == 8*k, Print[k]], {k, 5*10^9}] (* Timothy L. Tiffin, Aug 26 2021 *)
CROSSREFS
Cf. A000396 (subsequence, apart from its terms that are divisible by 3).
Subsequence of A005101 and A227303.
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 19 2021
EXTENSIONS
a(7)-a(8) from Martin Ehrenstein, Mar 06 2021
a(9)-a(10) from Michel Marcus, Aug 27 2021
STATUS
approved

Search completed in 0.008 seconds