OFFSET
1,1
COMMENTS
Every perfect number P greater than 6 (so, P is not divisible by 3) will be found in this sequence. Proof: sigma(3*P) = sigma(3)*sigma(P) = 4*(2*P) = 8*P. - Timothy L. Tiffin, Aug 26 2021
Solutions are integers y/3 where sigma(y)/y = 8/3. - Michel Marcus, Aug 27 2021
EXAMPLE
546 is a term, since sigma(3*546) = sigma(1638) = 4368 = 8*546. - Timothy L. Tiffin, Aug 26 2021
MATHEMATICA
Select[Range[5*10^9], DivisorSigma[1, 3*#] == 8*# &] (* Timothy L. Tiffin, Aug 26 2021 *)
Do[If[DivisorSigma[1, 3*k] == 8*k, Print[k]], {k, 5*10^9}] (* Timothy L. Tiffin, Aug 26 2021 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 19 2021
EXTENSIONS
a(7)-a(8) from Martin Ehrenstein, Mar 06 2021
a(9)-a(10) from Michel Marcus, Aug 27 2021
STATUS
approved