[go: up one dir, main page]

login
Search: a344371 -id:a344371
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{k = 1..n} gcd(2*k, n).
+10
15
1, 4, 5, 12, 9, 20, 13, 32, 21, 36, 21, 60, 25, 52, 45, 80, 33, 84, 37, 108, 65, 84, 45, 160, 65, 100, 81, 156, 57, 180, 61, 192, 105, 132, 117, 252, 73, 148, 125, 288, 81, 260, 85, 252, 189, 180, 93, 400, 133, 260, 165, 300, 105, 324, 189, 416, 185, 228, 117, 540, 121, 244, 273
OFFSET
1,2
COMMENTS
For all n, a(n) >= 2*n - 1, where the equality holds if n is 1 or an odd prime.
a(n) equals the number of solutions to the congruence 2*x*y == 0 (mod n) for 1 <= x, y <= n. - Peter Bala, Jan 11 2024
LINKS
FORMULA
a(n) = Sum_{k = 1..2*n} (-1)^k * gcd(k,2*n).
a(n) is multiplicative with a(2^d) = (d+1)*2^d, and a(p^d) = (d+1)*p^d - d*p^(d-1) for an odd prime p, d >= 1.
a(n) = A344371(2*n) = -A199084(2*n) = 2*n - A106475(n-1).
a(n) = A018804(n) if n is odd, 4*A018804(n/2) if n is even. - Sebastian Karlsson, Aug 31 2021
From Peter Bala, Jan 11 2023: (Start)
a(n) = Sum_{d divides n} phi(2*d)*n/d, where phi(n) = A000010(n).
a(n) = - A332794(2*n); a(2*n+1) = A368736(2*n+1).
Dirichlet g.f.: 1/(1 - 1/2^s) * zeta(s-1)^2/zeta(s).
Define D(n) = Sum_{d divides n} a(d). Then
D(2*n+1) = (2*n + 1)*tau(2*n+1), where tau(n) = A000005(n), the number of divisors of n.
The sequence {(1/4)*( D(2*n) - D(n) ) : n >= 1} begins {1, 3, 6, 8, 10, 18, 14, 20, 27, 30, 22, 48, 26, 42, 60, 48, 34, 81, 38, 80, 84, 66, ...} and appears to be multiplicative. (End)
Sum_{k=1..n} a(k) ~ 4*n^2 * (log(n) - 1/2 + 2*gamma - log(2)/3 - 6*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024
EXAMPLE
a(6) = 20: the 20 solutions to the congruence 2*x*y == 0 (mod 6) for 1 <= x, y <= 6 are the pairs (x, y) = (k, 6) for 1 <= k <= 6, the pairs (6, k) for 1 <= k <= 5, the pairs (3, k) for 1 <= k <= 5 and the pairs (1, 3), (2, 3), (4, 3) and (5, 3). - Peter Bala, Jan 11 2024
MAPLE
seq(add((-1)^k*gcd(k, 2*n), k = 1..2*n), n = 1..70);
# alternative faster program for large n
with(numtheory): seq(add(gcd(2, d)*phi(d)*n/d, d in divisors(n)), n = 1..70); # Peter Bala, Jan 08 2024
MATHEMATICA
f[p_, e_] := (e + 1)*p^e - e*p^(e - 1); f[2, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
Table[Sum[GCD[2*k, n], {k, 1, n}], {n, 1, 60}] (* or *)
Table[Sum[(-1)^k * GCD[k, 2*n], {k, 1, 2*n}], {n, 1, 60}] (* Vaclav Kotesovec, Jan 13 2024 *)
PROG
(PARI) { A344372(n) = my(f=factor(n)); prod(i=1, #f~, (f[i, 2]+1)*f[i, 1]^f[i, 2] - if(f[i, 1]>2, f[i, 2]*f[i, 1]^(f[i, 2]-1)) ); }
(PARI) a(n) = sum(k=1, 2*n, (-1)^k*gcd(k, 2*n)); \\ Michel Marcus, May 17 2021
CROSSREFS
Negated bisection of A199084.
KEYWORD
nonn,mult,easy
AUTHOR
Max Alekseyev, May 16 2021
EXTENSIONS
New name according to the formula by Peter Bala from Vaclav Kotesovec, Jan 13 2024
STATUS
approved
a(n) = Sum_{k=1..n} (-1)^(k+1) gcd(k,n).
+10
8
1, -1, 3, -4, 5, -5, 7, -12, 9, -9, 11, -20, 13, -13, 15, -32, 17, -21, 19, -36, 21, -21, 23, -60, 25, -25, 27, -52, 29, -45, 31, -80, 33, -33, 35, -84, 37, -37, 39, -108, 41, -65, 43, -84, 45, -45, 47, -160, 49, -65, 51, -100, 53, -81, 55, -156, 57
OFFSET
1,3
COMMENTS
The alternating sum analog of A018804.
a(2n) <= -(2n-1) (cf. A344372). - Max Alekseyev, May 16 2021
LINKS
Vincenzo Librandi and Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
Laszlo Toth, Weighted Gcd-Sum Functions, J. Int. Seq. 14 (2011) # 11.7.7.
FORMULA
a(2n+1) = 2n+1. - Seiichi Manyama, Dec 09 2016
a(n) = (-1)^(n+1)*A344371(n) = A344373(n) - (-1)^n*n. - Max Alekseyev, May 16 2021
a(2n) = -A344372(n). - Max Alekseyev, May 16 2021
Sum_{k=1..n} a(k) ~ (n^2/Pi^2) * (-log(n) - 2*gamma + 1/2 + 4*log(2)/3 + Pi^2/4 + zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024
MAPLE
A199084 := proc(n)
add((-1)^(k-1)* igcd(k, n), k=1..n) ;
end proc:
seq(A199084(n), n=1..80) ;
MATHEMATICA
altGCDSum[n_] := Sum[(-1)^(i + 1)GCD[i, n], {i, n}]; Table[altGCDSum[n], {n, 50}] (* Alonso del Arte, Nov 02 2011 *)
Total/@Table[(-1)^(k+1) GCD[k, n], {n, 60}, {k, n}] (* Harvey P. Dale, May 29 2013 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*gcd(k, n)); \\ Michel Marcus, Jun 28 2023
KEYWORD
sign,easy
AUTHOR
R. J. Mathar, Nov 02 2011
STATUS
approved
An alternating sum of greatest common divisors.
+10
5
1, 0, 1, -4, 1, -8, 1, -16, -3, -16, 1, -36, 1, -24, -15, -48, 1, -48, 1, -68, -23, -40, 1, -112, -15, -48, -27, -100, 1, -120, 1, -128, -39, -64, -47, -180, 1, -72, -47, -208, 1, -176, 1, -164, -99, -88, 1, -304, -35, -160, -63, -196, 1, -216, -79, -304, -71, -112, 1, -420, 1, -120, -147, -320, -95, -288, 1, -260, -87
OFFSET
0,4
COMMENTS
With interpolated 0's, this is Sum_{k=0..n} gcd(n-k+1,k+1)*(-1)^k.
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} gcd(2*n-k+1, k+1)*(-1)^k.
a(n) = 2(n+1) - A344371(2(n+1)) = 2(n+1) - A344372(n+1) = 2(n+1) + A199084(2(n+1)). - Max Alekseyev, May 16 2021
Sum_{k=1..n} a(k) ~ n^2 * (1 - (4/Pi^2)*(log(n) + 2*gamma - 1/2 - log(2)/3 - zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024
MATHEMATICA
Table[Sum[GCD[2n-k+1, k+1](-1)^k, {k, 0, 2n}], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
PROG
(PARI) A106475(n) = sum(k=0, (2*n), gcd(1+n+n-k, k+1)*((-1)^k)); \\ Antti Karttunen, Mar 30 2021
CROSSREFS
Negated bisection of A344373.
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 03 2005
EXTENSIONS
More terms from Antti Karttunen, Mar 30 2021
STATUS
approved
a(n) = Sum_{k=1..n-1} (-1)^k gcd(k, n).
+10
5
0, -1, 0, 0, 0, -1, 0, 4, 0, -1, 0, 8, 0, -1, 0, 16, 0, 3, 0, 16, 0, -1, 0, 36, 0, -1, 0, 24, 0, 15, 0, 48, 0, -1, 0, 48, 0, -1, 0, 68, 0, 23, 0, 40, 0, -1, 0, 112, 0, 15, 0, 48, 0, 27, 0, 100, 0, -1, 0, 120, 0, -1, 0, 128, 0, 39, 0, 64, 0, 47, 0, 180, 0, -1, 0, 72, 0, 47, 0, 208, 0, -1, 0, 176, 0, -1, 0, 164, 0, 99
OFFSET
1,8
COMMENTS
The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception.
For all n, a(n) >= -1. Equality holds for n = 2 and n = 2*p for an odd prime p.
FORMULA
a(n) = -A199084(n) - (-1)^n*n = (-1)^n * (A344371(n) - n).
a(2*n+1) = 0.
a(2*n) = A344372(n) - 2*n = -A106475(n-1).
Sum_{k=1..n} a(k) ~ (n^2/4) * ((4/Pi^2)*(log(n) + 2*gamma - 1/2 - 4*log(2)/3 - zeta'(2)/zeta(2)) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024
MATHEMATICA
Array[Sum[(-1)^k GCD[k, #], {k, # - 1}] &, 90] (* Michael De Vlieger, May 16 2021 *)
PROG
(PARI) A344373(n) = sum(k=1, n-1, ((-1)^k)*gcd(k, n)); \\ Antti Karttunen, May 16 2021
KEYWORD
sign,easy,look
AUTHOR
Max Alekseyev, May 16 2021
EXTENSIONS
More terms from Antti Karttunen, May 16 2021
STATUS
approved
a(n) = Sum_{k = 1..n} (-1)^(n+k) * gcd(2*k, n).
+10
0
1, 0, 3, 4, 5, 0, 7, 16, 9, 0, 11, 20, 13, 0, 15, 48, 17, 0, 19, 36, 21, 0, 23, 80, 25, 0, 27, 52, 29, 0, 31, 128, 33, 0, 35, 84, 37, 0, 39, 144, 41, 0, 43, 84, 45, 0, 47, 240, 49, 0, 51, 100, 53, 0, 55, 208, 57, 0, 59, 180, 61, 0, 63, 320, 65, 0, 67, 132, 69, 0
OFFSET
1,3
FORMULA
a(2*n+1) = 2*n + 1; a(4*n+2) = 0; a(4*n) = 4*A344372(n) = 4*Sum_{k = 1..n} gcd(2*k, n).
MAPLE
seq(add((-1)^(n+k) * gcd(2*k, n), k = 1..n), n = 1..70)
MATHEMATICA
Table[Sum[(-1)^(n+k) GCD[2k, n], {k, n}], {n, 70}] (* Harvey P. Dale, Jun 16 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jan 01 2024
STATUS
approved

Search completed in 0.005 seconds