[go: up one dir, main page]

login
Search: a342671 -id:a342671
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array A(n,k) = A342671(A246278(n,k)), read by falling antidiagonals, where A342671(x) = gcd(sigma(x), A003961(x)).
+20
7
3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 17, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 37, 1, 1, 1
OFFSET
1,1
FORMULA
A(n,k) = A342671(A246278(n,k)).
A(n, k) = gcd(A246278(1+n,k), A355927(n, k)).
EXAMPLE
The top left corner of the array:
n= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2n= 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
-----+-----------------------------------------------------------------------
1 | 3, 1, 3, 3, 3, 1, 3, 1, 3, 21, 3, 15, 3, 1, 3, 9, 3, 1, 3, 9, 3,
2 | 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 13, 1, 1, 5, 1, 1, 5, 1,
3 | 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 13, 7,
4 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1,
5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
6 | 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1,
7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 29, 1,
8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
11 | 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 37, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
21 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
PROG
(PARI)
up_to = 105;
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
A355924sq(row, col) = A342671(A246278sq(row, col));
A355924list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A355924sq(col, (a-(col-1))))); (v); };
v355924 = A355924list(up_to);
A355924(n) = v355924[n];
CROSSREFS
Cf. also A355925, A355926, A355927 for similarly constructed arrays.
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jul 21 2022
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A348717(i) = A348717(j) for all i, j >= 1.
+20
5
1, 2, 3, 4, 3, 5, 3, 6, 4, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 4, 17, 18, 19, 3, 20, 3, 21, 22, 23, 10, 24, 3, 25, 26, 27, 3, 28, 3, 29, 8, 30, 3, 31, 4, 32, 33, 34, 3, 35, 14, 36, 37, 38, 3, 39, 3, 40, 41, 42, 43, 44, 3, 45, 46, 47, 3, 48, 3, 49, 50, 51, 10, 52, 3, 53, 11, 54, 3, 55, 26, 56, 57, 58, 3, 59, 14, 60, 61, 62, 33, 63, 3, 64, 65, 66
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A342671(n), A348717(n)].
Terms that occur in positions given by A349166 may occur only a finite number of times in this sequence. See also the array A355924.
EXAMPLE
a(100) = a(3025) [= 66 as allotted by the rgs-transform] because 3025 = A003961(A003961(100)), therefore it is in the same column of the prime shift array A246278 as 100 is], and as A342671(100) = A342671(3025) = 7.
a(300) = a(21175) [= 200 as allotted by the rgs-transform], as 21175 = A003961(A003961(300)) and as A342671(300) = A342671(21175) = 7.
a(1215) = a(21875) [= 831 as allotted by the rgs-transform] because 21875 = A003961(1215), therefore it is in the same column of the prime shift array A246278 as 1215 is, and as A342671(1215) = A342671(21875) = 7.
a(2835) = a(48125) [= 1953 as allotted by the rgs-transform] because 48125 = A003961(2835) and as A342671(2835) = A342671(48125) = 11.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
Aux355833(n) = [A342671(n), A348717(n)];
v355833 = rgs_transform(vector(up_to, n, Aux355833(n)));
A355833(n) = v355833[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved
Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).
+20
4
1, -3, -1, 8, -1, 3, -1, -24, 0, 3, -1, -8, -1, 3, 1, 72, -1, 0, -1, -28, 1, 3, -1, 12, 0, 3, -4, -8, -1, -3, -1, -222, 1, 3, 1, 0, -1, 3, 1, 138, -1, -3, -1, -10, 0, 3, -1, 0, 0, 0, 1, -8, -1, 12, 1, 24, -3, 3, -1, 28, -1, 3, 0, 684, -5, -3, -1, -16, 1, -3, -1, 12, -1, 3, 0, -8, 1, -3, -1, -538, 8, 3, -1, 8, 1, 3, -3, 30
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A342671(n/d) * a(d).
MATHEMATICA
f[p_, e_] := NextPrime[p]^e; s[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
memoA355828 = Map();
A355828(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355828, n, &v), v, v = -sumdiv(n, d, if(d<n, A342671(n/d)*A355828(d), 0)); mapput(memoA355828, n, v); (v)));
CROSSREFS
Cf. also A355829.
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A349162(i) = A349162(j), for all i, j >= 1.
+20
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 16, 24, 25, 26, 27, 28, 21, 29, 30, 31, 30, 32, 33, 34, 26, 35, 36, 37, 38, 39, 40, 28, 30, 41, 42, 43, 44, 45, 46, 47, 44, 48, 49, 50, 51, 52, 53, 37, 54, 55, 56, 57, 58, 59, 60, 57, 44, 61, 62, 63, 41, 64, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 65, 79, 57
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A342671(n), A349162(n)], or equally, of the pair [A000203(n), A342671(n)], or equally, of the pair [A000203(n), A349162(n)].
For all i, j >= 1:
A369259(i) = A369259(j) => a(i) = a(j) => A286603(i) = A286603(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
Aux369260(n) = { my(u=A342671(n)); [u, sigma(n)/u]; };
v369260 = rgs_transform(vector(up_to, n, Aux369260(n)));
A369260(n) = v369260[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 25 2024
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j), A322361(i) = A322361(j) and A342671(i) = A342671(j), for all i, j >= 1.
+20
3
1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 1, 5, 1, 4, 6, 1, 1, 7, 1, 8, 1, 4, 1, 9, 1, 4, 10, 11, 1, 12, 1, 13, 14, 4, 15, 16, 1, 4, 1, 17, 1, 3, 1, 18, 6, 4, 1, 5, 1, 2, 14, 19, 1, 20, 1, 21, 10, 4, 1, 22, 1, 4, 1, 1, 23, 3, 1, 24, 14, 25, 1, 26, 1, 4, 27, 28, 29, 3, 1, 4, 1, 4, 1, 30, 1, 4, 31, 32, 1, 33, 34, 18, 1, 4, 35, 36, 1, 2, 37, 23
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the triple [A009194(n), A322361(n), A342671(n)].
For all i, j:
a(i) = a(j) => A349167(i) = A349167(j),
a(i) = a(j) => A353666(i) = A353666(j),
a(i) = a(j) => A372565(i) = A372565(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux372572(n) = [gcd(n, sigma(n)), gcd(n, A003961(n)), gcd(sigma(n), A003961(n))];
v372572 = rgs_transform(vector(up_to, n, Aux372572(n)));
A372572(n) = v372572[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 24 2024
STATUS
approved
Numbers k for which A342671(k) [= gcd(sigma(k), A003961(k))] and A349161(k) [= A003961(k)/A342671(k)] are relatively prime, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.
+20
2
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 95
OFFSET
1,2
COMMENTS
Numbers k for which A349163(k) and A349164(k) are coprime, i.e., k such that A349163(k) and A349164(k) are unitary divisors of k.
MATHEMATICA
Select[Range[95], GCD[#2, #1/#2] == 1 & @@ {#2, #2/GCD[##]} & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA349144(n) = { my(u=A003961(n), x=gcd(u, sigma(n))); (1==gcd(x, u/x)); };
CROSSREFS
Complement of A349168.
Cf. A349165 (subsequence).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2021
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A003557(i) = A003557(j), A048250(i) = A048250(j) and A342671(i) = A342671(j), for all i, j >= 1.
+20
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 59
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the triplet [A003557(j), A048250(i), A342671(n)].
For all i, j >= 1:
a(i) = a(j) => A323368(i) = A323368(j) => A291751(i) = A291751(j),
a(i) = a(j) => A369260(i) = A369260(j) => A286603(i) = A286603(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003557(n) = (n/factorback(factor(n)[, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
A342671(n) = gcd(sigma(n), A003961(n));
Aux369259(n) = [A003557(n), A048250(n), A342671(n)];
v369259 = rgs_transform(vector(up_to, n, Aux369259(n)));
A369259(n) = v369259[n];
CROSSREFS
Differs from related A296089 and A323368 for the first time at n=79, where a(79) = 69, while A296089(79) = A323368(79) = 51.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 25 2024
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A009195(n), A009223(n), A322361(n), A342671(n)], for all i, j >= 1.
+20
2
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 8, 3, 16, 17, 10, 18, 19, 3, 20, 3, 21, 22, 8, 23, 24, 3, 10, 25, 26, 3, 27, 3, 28, 29, 8, 3, 30, 31, 32, 33, 34, 3, 35, 36, 37, 38, 8, 3, 39, 3, 10, 40, 41, 42, 43, 3, 44, 22, 45, 3, 46, 3, 10, 47, 48, 49, 50, 3, 51, 52, 8, 3, 53, 54, 10, 55, 56, 3, 57, 58, 28, 15, 8, 59, 60, 3, 61, 62, 63, 3
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the quintuple [A009194(n), A009195(n), A009223(n), A322361(n), A342671(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A372569(i) = A372569(j),
a(i) = a(j) => A372572(i) = A372572(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux372570(n) = [gcd(n, sigma(n)), gcd(n, eulerphi(n)), gcd(eulerphi(n), sigma(n)), gcd(n, A003961(n)), gcd(sigma(n), A003961(n))];
v372570 = rgs_transform(vector(up_to, n, Aux372570(n)));
A372570(n) = v372570[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 25 2024
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A355828(i) = A355828(j) for all i, j >= 1, where A355828 is Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n).
+20
1
1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 1, 9, 3, 7, 3, 10, 1, 5, 3, 11, 7, 5, 12, 8, 3, 2, 3, 13, 1, 5, 1, 7, 3, 5, 1, 14, 3, 2, 3, 15, 7, 5, 3, 7, 7, 7, 1, 8, 3, 11, 1, 16, 2, 5, 3, 17, 3, 5, 7, 18, 19, 2, 3, 20, 1, 2, 3, 11, 3, 5, 7, 8, 1, 2, 3, 21, 4, 5, 3, 4, 1, 5, 2, 22, 3, 7, 1, 15, 1, 5, 1, 23, 3, 7, 24
OFFSET
1,2
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
v366384 = rgs_transform(DirInverseCorrect(vector(up_to, n, A342671(n))));
A366384(n) = v366384[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2023
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A001065(i) = A001065(j) and A342671(i) = A342671(j), for all i, j >= 1.
+20
1
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 12, 24, 25, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 28, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 31, 53, 54, 55, 56, 3, 57, 58, 59, 3, 60, 61, 62, 63, 64, 3, 65, 37, 66
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A001065(n), A342671(n)].
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux369447(n) = [sigma(n)-n, gcd(sigma(n), A003961(n))];
v369447 = rgs_transform(vector(up_to, n, Aux369447(n)));
A369447(n) = v369447[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 25 2024
STATUS
approved

Search completed in 0.033 seconds