Displaying 1-10 of 40 results found.
3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 17, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 37, 1, 1, 1
EXAMPLE
The top left corner of the array:
n= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2n= 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
-----+-----------------------------------------------------------------------
1 | 3, 1, 3, 3, 3, 1, 3, 1, 3, 21, 3, 15, 3, 1, 3, 9, 3, 1, 3, 9, 3,
2 | 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 13, 1, 1, 5, 1, 1, 5, 1,
3 | 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 13, 7,
4 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1,
5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
6 | 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1,
7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 29, 1,
8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
11 | 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 37, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
21 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
PROG
(PARI)
up_to = 105;
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A355924sq(row, col) = A342671(A246278sq(row, col));
A355924list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A355924sq(col, (a-(col-1))))); (v); };
v355924 = A355924list(up_to);
Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A348717(i) = A348717(j) for all i, j >= 1.
+20
5
1, 2, 3, 4, 3, 5, 3, 6, 4, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 4, 17, 18, 19, 3, 20, 3, 21, 22, 23, 10, 24, 3, 25, 26, 27, 3, 28, 3, 29, 8, 30, 3, 31, 4, 32, 33, 34, 3, 35, 14, 36, 37, 38, 3, 39, 3, 40, 41, 42, 43, 44, 3, 45, 46, 47, 3, 48, 3, 49, 50, 51, 10, 52, 3, 53, 11, 54, 3, 55, 26, 56, 57, 58, 3, 59, 14, 60, 61, 62, 33, 63, 3, 64, 65, 66
COMMENTS
Restricted growth sequence transform of the ordered pair [ A342671(n), A348717(n)].
Terms that occur in positions given by A349166 may occur only a finite number of times in this sequence. See also the array A355924.
EXAMPLE
a(100) = a(3025) [= 66 as allotted by the rgs-transform] because 3025 = A003961( A003961(100)), therefore it is in the same column of the prime shift array A246278 as 100 is], and as A342671(100) = A342671(3025) = 7.
a(1215) = a(21875) [= 831 as allotted by the rgs-transform] because 21875 = A003961(1215), therefore it is in the same column of the prime shift array A246278 as 1215 is, and as A342671(1215) = A342671(21875) = 7.
a(2835) = a(48125) [= 1953 as allotted by the rgs-transform] because 48125 = A003961(2835) and as A342671(2835) = A342671(48125) = 11.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
v355833 = rgs_transform(vector(up_to, n, Aux355833(n)));
Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).
+20
4
1, -3, -1, 8, -1, 3, -1, -24, 0, 3, -1, -8, -1, 3, 1, 72, -1, 0, -1, -28, 1, 3, -1, 12, 0, 3, -4, -8, -1, -3, -1, -222, 1, 3, 1, 0, -1, 3, 1, 138, -1, -3, -1, -10, 0, 3, -1, 0, 0, 0, 1, -8, -1, 12, 1, 24, -3, 3, -1, 28, -1, 3, 0, 684, -5, -3, -1, -16, 1, -3, -1, 12, -1, 3, 0, -8, 1, -3, -1, -538, 8, 3, -1, 8, 1, 3, -3, 30
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A342671(n/d) * a(d).
MATHEMATICA
f[p_, e_] := NextPrime[p]^e; s[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
memoA355828 = Map();
A355828(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355828, n, &v), v, v = -sumdiv(n, d, if(d<n, A342671(n/d)* A355828(d), 0)); mapput(memoA355828, n, v); (v)));
Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A349162(i) = A349162(j), for all i, j >= 1.
+20
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 16, 24, 25, 26, 27, 28, 21, 29, 30, 31, 30, 32, 33, 34, 26, 35, 36, 37, 38, 39, 40, 28, 30, 41, 42, 43, 44, 45, 46, 47, 44, 48, 49, 50, 51, 52, 53, 37, 54, 55, 56, 57, 58, 59, 60, 57, 44, 61, 62, 63, 41, 64, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 65, 79, 57
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux369260(n) = { my(u= A342671(n)); [u, sigma(n)/u]; };
v369260 = rgs_transform(vector(up_to, n, Aux369260(n)));
1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 1, 5, 1, 4, 6, 1, 1, 7, 1, 8, 1, 4, 1, 9, 1, 4, 10, 11, 1, 12, 1, 13, 14, 4, 15, 16, 1, 4, 1, 17, 1, 3, 1, 18, 6, 4, 1, 5, 1, 2, 14, 19, 1, 20, 1, 21, 10, 4, 1, 22, 1, 4, 1, 1, 23, 3, 1, 24, 14, 25, 1, 26, 1, 4, 27, 28, 29, 3, 1, 4, 1, 4, 1, 30, 1, 4, 31, 32, 1, 33, 34, 18, 1, 4, 35, 36, 1, 2, 37, 23
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux372572(n) = [gcd(n, sigma(n)), gcd(n, A003961(n)), gcd(sigma(n), A003961(n))];
v372572 = rgs_transform(vector(up_to, n, Aux372572(n)));
Numbers k for which A342671(k) [= gcd(sigma(k), A003961(k))] and A349161(k) [= A003961(k)/ A342671(k)] are relatively prime, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.
+20
2
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 95
MATHEMATICA
Select[Range[95], GCD[#2, #1/#2] == 1 & @@ {#2, #2/GCD[##]} & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA349144(n) = { my(u= A003961(n), x=gcd(u, sigma(n))); (1==gcd(x, u/x)); };
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 59
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003557(n) = (n/factorback(factor(n)[, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
v369259 = rgs_transform(vector(up_to, n, Aux369259(n)));
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [ A009194(n), A009195(n), A009223(n), A322361(n), A342671(n)], for all i, j >= 1.
+20
2
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 8, 3, 16, 17, 10, 18, 19, 3, 20, 3, 21, 22, 8, 23, 24, 3, 10, 25, 26, 3, 27, 3, 28, 29, 8, 3, 30, 31, 32, 33, 34, 3, 35, 36, 37, 38, 8, 3, 39, 3, 10, 40, 41, 42, 43, 3, 44, 22, 45, 3, 46, 3, 10, 47, 48, 49, 50, 3, 51, 52, 8, 3, 53, 54, 10, 55, 56, 3, 57, 58, 28, 15, 8, 59, 60, 3, 61, 62, 63, 3
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux372570(n) = [gcd(n, sigma(n)), gcd(n, eulerphi(n)), gcd(eulerphi(n), sigma(n)), gcd(n, A003961(n)), gcd(sigma(n), A003961(n))];
v372570 = rgs_transform(vector(up_to, n, Aux372570(n)));
Lexicographically earliest infinite sequence such that a(i) = a(j) => A355828(i) = A355828(j) for all i, j >= 1, where A355828 is Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n).
+20
1
1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 1, 9, 3, 7, 3, 10, 1, 5, 3, 11, 7, 5, 12, 8, 3, 2, 3, 13, 1, 5, 1, 7, 3, 5, 1, 14, 3, 2, 3, 15, 7, 5, 3, 7, 7, 7, 1, 8, 3, 11, 1, 16, 2, 5, 3, 17, 3, 5, 7, 18, 19, 2, 3, 20, 1, 2, 3, 11, 3, 5, 7, 8, 1, 2, 3, 21, 4, 5, 3, 4, 1, 5, 2, 22, 3, 7, 1, 15, 1, 5, 1, 23, 3, 7, 24
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
v366384 = rgs_transform(DirInverseCorrect(vector(up_to, n, A342671(n))));
Lexicographically earliest infinite sequence such that a(i) = a(j) => A001065(i) = A001065(j) and A342671(i) = A342671(j), for all i, j >= 1.
+20
1
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 12, 24, 25, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 28, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 31, 53, 54, 55, 56, 3, 57, 58, 59, 3, 60, 61, 62, 63, 64, 3, 65, 37, 66
COMMENTS
Restricted growth sequence transform of the ordered pair [ A001065(n), A342671(n)].
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
Aux369447(n) = [sigma(n)-n, gcd(sigma(n), A003961(n))];
v369447 = rgs_transform(vector(up_to, n, Aux369447(n)));
Search completed in 0.033 seconds
|