[go: up one dir, main page]

login
Search: a339855 -id:a339855
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let p be the n-th prime, then a(n) = A/p where A is the smallest number (in absolute value) such that F_{p-(p/5)} == A (mod p^2) with F_n = A000045(n) and (p/5) the Legendre symbol.
+10
11
1, 1, 1, 3, 5, 3, -1, 3, -8, -3, -6, 13, -2, -4, 16, -25, 10, -13, 7, -16, -15, -30, 21, 5, 37, -4, 22, 24, 26, -53, 13, 64, 58, -22, -29, 60, 44, -3, 44, -43, -5, -50, 94, 31, -56, 5, -99, 3, -73, 18, 29, 5, -59, -1, 2
OFFSET
1,4
COMMENTS
a(n) is the smallest A such that p is a near-Wall-Sun-Sun prime. A gives the value of F_p-(p/5) modulo p^2 and a value of 0 would indicate a Wall-Sun-Sun prime. A244801 is similar but always gives the positive A, while this sequence gives A with the smallest absolute value.
a(1), with p=2, is technically ambiguous between 1 and -1, so a(1)=1 is by convention. Clearly this cannot happen for n>1 (where p^2 is odd). - Jeppe Stig Nielsen, Sep 09 2021
LINKS
R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., 76 (2007), 2087-2094.
MATHEMATICA
Array[(#3 - #2 Boole[#3 > #2/2])/#1 & @@ {#, #^2, Mod[Fibonacci[# - KroneckerSymbol[#, 5]], #^2]} &@ Prime[#] &, 55] (* Michael De Vlieger, Sep 08 2021 *)
PROG
(PARI) forprime(p=2, 1e2, a=fibonacci(p-kronecker(p, 5))%p^2; if(a>p^2/2, a-=p^2); a=a/p; print1(a, ", "))
(PARI) a(n)=my(p=prime(n)); centerlift(((Mod([1, 1; 1, 0], p^2))^(p-kronecker(p, 5))))[1, 2]/p \\ Charles R Greathouse IV, Aug 21 2014
CROSSREFS
KEYWORD
sign
AUTHOR
Felix Fröhlich, Aug 13 2014
STATUS
approved
Primes p such that A241014(A000720(p)) is +1 or -1.
+10
2
2, 3, 5, 17, 251, 733, 1063, 123863, 1677209, 6336823451747417, 104868559750360787, 7665762181374748069
OFFSET
1,1
COMMENTS
Very near misses for Wall-Sun-Sun primes.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Sep 06 2021
STATUS
approved
Primes p such that 47^(p-1) == 1 + A*p (mod p^2) and |A/p| is a new record low.
+10
1
2, 3, 5, 19, 37, 47, 38693, 44657, 148091, 178621, 692521, 4584379, 262148693, 347850691, 502176491, 1139746919, 1387837067, 5291181761, 92653098679, 202259581243
OFFSET
1,1
COMMENTS
47 is the smallest b such that no base-b Wieferich prime, i.e., prime p such that b^(p-1) == 1 (mod p^2) is known (cf. Fischer).
The known terms of the sequence are base-47 near-Wieferich primes matching a definition of "nearness" introduced by Dorais and Klyve (cf. Dorais, Klyve, 2011).
If a base-47 Wieferich prime exists, then the sequence is finite and terminates at that prime.
LINKS
F. G. Dorais and D. Klyve, A Wieferich Prime Search up to 6.7 × 10^15, Journal of Integer Sequences, Vol. 14 (2011), Article 11.9.2.
EXAMPLE
p | abs(A/p) (frac) | abs(A/p) (dec)
----------------------------------------------------
2 | 1/2 | 0.5
3 | 1/3 | 0.333333333333333
5 | 1/5 | 0.2
19 | 2/19 | 0.105263157894736
37 | 2/37 | 0.054054054054054
47 | 1/2209 | 0.000452693526482
38693 | 10/38693 | 0.000258444679916
44657 | 4/44657 | 0.000089571623709
148091 | 13/148091 | 0.000087783862625
178621 | 1/178621 | 0.000005598445871
692521 | 1/692521 | 0.000001443999532
4584379 | 1/4584379 | 0.000000218132052
262148693 | 39/262148693 | 0.000000148770530
347850691 | 47/347850691 | 0.000000135115442
502176491 | 51/502176491 | 0.000000101557920
1139746919 | 75/1139746919 | 0.000000065804082
1387837067 | 8/1387837067 | 0.000000005764365
5291181761 | 3/5291181761 | 0.000000000566981
92653098679 | 7/92653098679 | 0.000000000075550
202259581243 | 5/202259581243 | 0.000000000024720
PROG
(PARI) my(a=0, ab=0, r=0); forprime(p=1, , a = (lift(Mod(47, p^2)^(p-1))-1)/p; ab=abs(a/p); if(r==0, r=ab; print1(p, ", "), if(ab < r, r=ab; print1(p, ", "))))
CROSSREFS
Cf. A339855.
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Apr 22 2021
EXTENSIONS
a(19) from Felix Fröhlich, Jul 01 2021
a(20) from Felix Fröhlich, Jul 02 2021
STATUS
approved

Search completed in 0.006 seconds