[go: up one dir, main page]

login
Search: a332757 -id:a332757
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of fixed-point free involutions in the n-fold iterated wreath product of C_2.
+10
3
0, 1, 3, 17, 417, 206657, 44854599297, 2021158450131287670017, 4085251621720569336520310526902208564886017, 16689280870666586360302304039420036318743515355074220606298783584912362351240766944257
OFFSET
0,3
COMMENTS
Also the number of fixed-point free involutions in a fixed Sylow 2-subgroup of the symmetric group of degree 2^n.
Also the number of fixed-point free involutory automorphisms of the complete binary tree of height n.
FORMULA
a(n) = a(n-1)^2 + 2^(2^(n-1)-1), a(0) = 0.
a(n) ~ C^(2^n) for C = 1.467067423065535412629251121186749718727038915553188083467...
EXAMPLE
For n=2, the a(2)=3 fixed-point free involutions in C_2 wr C_2 (which is isomorphic to the dihedral group of degree 4) are (12)(34), (13)(24), and (14)(23).
MATHEMATICA
Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {0}, 9] (* Michael De Vlieger, Feb 25 2020 *)
CROSSREFS
Cf. A332757.
KEYWORD
nonn
AUTHOR
Nick Krempel, Feb 22 2020
STATUS
approved
Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree n.
+10
1
1, 1, 2, 2, 6, 6, 12, 12, 44, 44, 88, 88, 264, 264, 528, 528, 2064, 2064, 4128, 4128, 12384, 12384, 24768, 24768, 90816, 90816, 181632, 181632, 544896, 544896, 1089792, 1089792, 4292864, 4292864, 8585728, 8585728, 25757184, 25757184, 51514368, 51514368
OFFSET
0,3
COMMENTS
As the Sylow 2-subgroups of S_(2n) are isomorphic to those of S_(2n+1), the terms of this sequence come in pairs.
Also the number of involutory automorphisms (including identity) of the full binary tree with n leaves (hence 2n-1 vertices) in which all left children are complete (perfect) binary trees.
FORMULA
a(n) = Product(A332757(k)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 1.6116626399..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
Conjecture: B=1 and A=0.409091077245262341747187571213565366725933766222357989... - Vaclav Kotesovec, Feb 26 2020
EXAMPLE
For n=4, the a(4)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
MAPLE
b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end:
a:= n-> (l-> mul(`if`(l[i]=1, b(i-1), 1), i=1..nops(l)))(Bits[Split](n)):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 27 2020
MATHEMATICA
Join[{1}, Block[{nn = 33, s}, s = Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {1}, Ceiling@ Log2@ nn]; Array[Times @@ s[[Position[Reverse@ IntegerDigits[#, 2], 1][[All, 1]] ]] &, nn]]] (* Michael De Vlieger, Feb 25 2020 *)
CROSSREFS
Cf. A000085.
KEYWORD
nonn
AUTHOR
Nick Krempel, Feb 22 2020
EXTENSIONS
More terms from Alois P. Heinz, Feb 27 2020
STATUS
approved
Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree 2n.
+10
1
1, 2, 6, 12, 44, 88, 264, 528, 2064, 4128, 12384, 24768, 90816, 181632, 544896, 1089792, 4292864, 8585728, 25757184, 51514368, 188886016, 377772032, 1133316096, 2266632192, 8860471296, 17720942592, 53162827776, 106325655552, 389860737024, 779721474048, 2339164422144
OFFSET
0,2
COMMENTS
Bisection of A332759.
LINKS
FORMULA
a(n) = A332759(2*n).
a(n) = Product(A332757(k+1)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 2.59745646488..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
EXAMPLE
For n=2, the a(2)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
MAPLE
b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end:
a:= n-> (l-> mul(`if`(l[i]=1, b(i), 1), i=1..nops(l)))(Bits[Split](n)):
seq(a(n), n=0..35); # Alois P. Heinz, Feb 27 2020
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, b[n - 1]^2 + 2^(2^(n - 1) - 1)];
a[n_] := Function[l, Product[If[l[[i]] == 1, b[i], 1], {i, 1, Length[l]}]][ Reverse @ IntegerDigits[n, 2]];
a /@ Range[0, 35] (* Jean-François Alcover, Apr 10 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)={my(v=vector(logint(max(1, n), 2)+1)); v[1]=2; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=1, #v, if(bittest(n, k-1), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Nick Krempel, Feb 27 2020
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Feb 27 2020
STATUS
approved

Search completed in 0.011 seconds