[go: up one dir, main page]

login
Search: a330234 -id:a330234
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 3^n - 2^n + 1.
+10
28
1, 2, 6, 20, 66, 212, 666, 2060, 6306, 19172, 58026, 175100, 527346, 1586132, 4766586, 14316140, 42981186, 129009092, 387158346, 1161737180, 3485735826, 10458256052, 31376865306, 94134790220, 282412759266, 847255055012
OFFSET
0,2
COMMENTS
Binomial transform of A000225 (if this starts 1,1,3,7....).
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
LINKS
M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], 2013.
FORMULA
G.f.: (1-4*x+5*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: exp(3*x) - exp(2*x) + exp(x).
Row sums of triangle A134319. - Gary W. Adamson, Oct 19 2007
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 10 2008
a(n) = Sum_{k=0..n}(binomial(n,k)*A255047(k)). - Yuchun Ji, Feb 23 2019
EXAMPLE
From Gus Wiseman, Dec 10 2019: (Start)
Also the number of achiral set-systems on n vertices, where a set-system is achiral if it is not changed by any permutation of the covered vertices. For example, the a(0) = 1 through a(3) = 20 achiral set-systems are:
0 0 0 0
{1} {1} {1}
{2} {2}
{12} {3}
{1}{2} {12}
{1}{2}{12} {13}
{23}
{123}
{1}{2}
{1}{3}
{2}{3}
{1}{2}{3}
{1}{2}{12}
{1}{3}{13}
{2}{3}{23}
{12}{13}{23}
{1}{2}{3}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{23}{123}
BII-numbers of these set-systems are A330217. Fully chiral set-systems are A330282, with covering case A330229.
(End)
MATHEMATICA
LinearRecurrence[{6, -11, 6}, {1, 2, 6}, 30] (* G. C. Greubel, Feb 13 2019 *)
PROG
(PARI) a(n)=3^n-2^n+1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [3^n-2^n+1: n in [0..30]]; // G. C. Greubel, Feb 13 2019
(Sage) [3^n-2^n+1 for n in range(30)] # G. C. Greubel, Feb 13 2019
(GAP) List([0..30], n -> 3^n-2^n+1); # G. C. Greubel, Feb 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 27 2003
STATUS
approved
Number of non-isomorphic achiral multiset partitions of weight n.
+10
15
1, 1, 4, 5, 12, 9, 30, 17, 52, 44
OFFSET
0,3
COMMENTS
A multiset partition is a finite multiset of finite nonempty multisets. It is achiral if it is not changed by any permutation of the vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 multiset partitions:
{1} {11} {111} {1111} {11111}
{12} {123} {1122} {12345}
{1}{1} {1}{11} {1234} {1}{1111}
{1}{2} {1}{1}{1} {1}{111} {11}{111}
{1}{2}{3} {11}{11} {1}{1}{111}
{11}{22} {1}{11}{11}
{12}{12} {1}{1}{1}{11}
{1}{1}{11} {1}{1}{1}{1}{1}
{1}{2}{12} {1}{2}{3}{4}{5}
{1}{1}{1}{1}
{1}{1}{2}{2}
{1}{2}{3}{4}
Non-isomorphic representatives of the a(6) = 30 multiset partitions:
{111111} {1}{11111} {1}{1}{1111} {1}{1}{1}{111} {1}{1}{1}{1}{11}
{111222} {11}{1111} {1}{11}{111} {1}{1}{11}{11} {1}{1}{2}{2}{12}
{112233} {111}{111} {11}{11}{11} {1}{2}{11}{22}
{123456} {111}{222} {11}{12}{22} {1}{2}{12}{12}
{112}{122} {11}{22}{33} {1}{2}{3}{123} {1}{1}{1}{1}{1}{1}
{12}{1122} {1}{2}{1122} {1}{1}{1}{2}{2}{2}
{123}{123} {12}{12}{12} {1}{1}{2}{2}{3}{3}
{12}{13}{23} {1}{2}{3}{4}{5}{6}
CROSSREFS
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Achiral integer partitions are counted by A330224.
Non-isomorphic fully chiral multiset partitions are A330227.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 07 2019
STATUS
approved
Number of fully chiral set-systems covering n vertices.
+10
14
1, 1, 2, 42, 21336
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the vertices gives a different representative.
FORMULA
Binomial transform is A330282.
EXAMPLE
The a(3) = 42 set-systems:
{1}{2}{13} {1}{2}{12}{13} {1}{2}{12}{13}{123}
{1}{2}{23} {1}{2}{12}{23} {1}{2}{12}{23}{123}
{1}{3}{12} {1}{3}{12}{13} {1}{3}{12}{13}{123}
{1}{3}{23} {1}{3}{13}{23} {1}{3}{13}{23}{123}
{2}{3}{12} {2}{3}{12}{23} {2}{3}{12}{23}{123}
{2}{3}{13} {2}{3}{13}{23} {2}{3}{13}{23}{123}
{1}{12}{23} {1}{2}{13}{123}
{1}{13}{23} {1}{2}{23}{123}
{2}{12}{13} {1}{3}{12}{123}
{2}{13}{23} {1}{3}{23}{123}
{3}{12}{13} {2}{3}{12}{123}
{3}{12}{23} {2}{3}{13}{123}
{1}{12}{123} {1}{12}{23}{123}
{1}{13}{123} {1}{13}{23}{123}
{2}{12}{123} {2}{12}{13}{123}
{2}{23}{123} {2}{13}{23}{123}
{3}{13}{123} {3}{12}{13}{123}
{3}{23}{123} {3}{12}{23}{123}
MATHEMATICA
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[Subsets[Subsets[Range[n], {1, n}]], Union@@#==Range[n]&&Length[graprms[#]]==n!&]], {n, 0, 3}]
CROSSREFS
The non-covering version is A330282.
Costrict (or T_0) covering set-systems are A059201.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 08 2019
STATUS
approved
MM-numbers of achiral multisets of multisets.
+10
14
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 72, 73, 76, 79, 80
OFFSET
1,2
COMMENTS
First differs from A322554 in lacking 141.
A multiset of multisets is achiral if it is not changed by any permutation of the vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of non-achiral multisets of multisets (the complement of this sequence) together with their MM-numbers begins:
35: {{2},{1,1}}
37: {{1,1,2}}
39: {{1},{1,2}}
45: {{1},{1},{2}}
61: {{1,2,2}}
65: {{2},{1,2}}
69: {{1},{2,2}}
70: {{},{2},{1,1}}
71: {{1,1,3}}
74: {{},{1,1,2}}
75: {{1},{2},{2}}
77: {{1,1},{3}}
78: {{},{1},{1,2}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
90: {{},{1},{1},{2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule, Table[{p[[i]], i}, {i, Length[p]}], {1}])], {p, Permutations[Union@@m]}]]
Select[Range[100], Length[graprms[primeMS/@primeMS[#]]]==1&]
CROSSREFS
The fully-chiral version is A330236.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
MM-weight is A302242.
MM-numbers of costrict (or T_0) multisets of multisets are A322847.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
Achiral factorizations are A330234.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
STATUS
approved
BII-numbers of achiral set-systems.
+10
13
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
OFFSET
1,3
COMMENTS
A set-system is a finite set of finite nonempty sets. It is achiral if it is not changed by any permutation of the vertices.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
EXAMPLE
The sequence of all achiral set-systems together with their BII-numbers begins:
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
16: {{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
63: {{1},{2},{3},{1,2},{1,3},{2,3}}
64: {{1,2,3}}
75: {{1},{2},{3},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Select[Range[0, 1000], Length[graprms[bpe/@bpe[#]]]==1&]
CROSSREFS
These are numbers n such that A330231(n) = 1.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
BII-numbers of fully chiral set-systems are A330226.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 06 2019
STATUS
approved
Number of fully chiral factorizations of n.
+10
10
1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 4, 1, 0, 0, 5, 1, 4, 1, 4, 0, 0, 1, 7, 2, 0, 3, 4, 1, 0, 1, 7, 0, 0, 0, 4, 1, 0, 0, 7, 1, 0, 1, 4, 4, 0, 1, 12, 2, 4, 0, 4, 1, 7, 0, 7, 0, 0, 1, 4, 1, 0, 4, 11, 0, 0, 1, 4, 0, 0, 1, 16, 1, 0, 4, 4, 0, 0, 1, 12, 5, 0, 1, 4, 0, 0
OFFSET
1,4
COMMENTS
A multiset of multisets is fully chiral every permutation of the vertices gives a different representative. A factorization is fully chiral if taking the multiset of prime indices of each factor gives a fully chiral multiset of multisets.
EXAMPLE
The a(n) factorizations for n = 1, 4, 8, 12, 16, 24, 48:
() (4) (8) (12) (16) (24) (48)
(2*2) (2*4) (2*6) (2*8) (3*8) (6*8)
(2*2*2) (3*4) (4*4) (4*6) (2*24)
(2*2*3) (2*2*4) (2*12) (3*16)
(2*2*2*2) (2*2*6) (4*12)
(2*3*4) (2*3*8)
(2*2*2*3) (2*4*6)
(3*4*4)
(2*2*12)
(2*2*2*6)
(2*2*3*4)
(2*2*2*2*3)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[facs[n], Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]], {n, 100}]
CROSSREFS
The costrict (or T_0) version is A316978.
The achiral version is A330234.
Planted achiral trees are A003238.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Full chiral partitions are A330228.
Fully chiral covering set-systems are A330229.
MM-numbers of fully chiral multisets of multisets are A330236.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
STATUS
approved
Number of achiral integer partitions of n.
+10
9
1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
OFFSET
0,3
COMMENTS
A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.
EXAMPLE
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (52)
(111) (31) (41) (42) (61)
(211) (221) (51) (331)
(1111) (311) (222) (421)
(2111) (321) (511)
(11111) (411) (2221)
(2211) (3211)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[IntegerPartitions[n], Length[graprms[primeMS/@#]]==1&]], {n, 0, 30}]
CROSSREFS
The fully-chiral version is A330228.
The Heinz numbers of these partitions are given by A330232.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral factorizations are A330234.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
EXTENSIONS
More terms from Jinyuan Wang, Jun 26 2020
STATUS
approved
Number of fully chiral set-systems on n vertices.
+10
6
1, 2, 5, 52, 21521
OFFSET
0,2
COMMENTS
A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.
FORMULA
Binomial transform of A330229.
EXAMPLE
The a(0) = 1 through a(2) = 5 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{1,2}}
{{2},{1,2}}
MATHEMATICA
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[Subsets[Subsets[Range[n], {1, n}]], Length[graprms[#]]==Length[Union@@#]!&]], {n, 0, 3}]
CROSSREFS
Costrict (or T_0) set-systems are A326940.
The covering case is A330229.
The unlabeled version is A330294, with covering case A330295.
Achiral set-systems are A083323.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2019
STATUS
approved
Number of non-isomorphic fully chiral set-systems on n vertices.
+10
5
1, 2, 3, 10, 899
OFFSET
0,2
COMMENTS
A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.
EXAMPLE
Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
0 0 0 0
{1} {1} {1}
{2}{12} {2}{12}
{1}{3}{23}
{2}{13}{23}
{3}{23}{123}
{2}{3}{13}{23}
{1}{3}{23}{123}
{2}{13}{23}{123}
{2}{3}{13}{23}{123}
CROSSREFS
The labeled version is A330282.
Partial sums of A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2019
STATUS
approved
Number of non-isomorphic fully chiral set-systems covering n vertices.
+10
5
1, 1, 1, 7, 889
OFFSET
0,4
COMMENTS
A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.
EXAMPLE
Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
0 {1} {1}{12} {1}{2}{13}
{1}{12}{23}
{1}{12}{123}
{1}{2}{12}{13}
{1}{2}{13}{123}
{1}{12}{23}{123}
{1}{2}{12}{13}{123}
CROSSREFS
The labeled version is A330229.
First differences of A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2019
STATUS
approved

Search completed in 0.010 seconds